
PREMIERE ISSUE

DJComputers.cz

DJC
om
pu
ter
s.c
z

.,

Contents Pre mer e Iss u e

6 Magic Macros with ReSource by Jeff Lavin
Creating image data and reconstructing MFM data are some of the more interesting
and useful things that may be done with ReSource.

16 AmigaDOS, EDIT and Recursive Programming Techniques by Mark Pardue
Developing a hard disk backup utility using only EDIT, AmigaDOS commands ...
and the magic of recursion.

26 Building the Videell 256 Grayscale Digitizer by Todd Elliott
Build an 8-bit video digitizer for less than $80 (including PCB and software).

34 An Introduction to Interprocess Communication with ARexx by Dan Suga/ski
Understanding ARexx's powerful ability to communicate with other programs
running simultaneously.

40 An Introduction to the ilbm.library by Jim Fiore
Speed software development with the ilbm.library's low-level IFF, mid-level IFF, and
high-level ILBM calls.

50 Creating a Database in C, Using dBC III by Robert Broughton
dBC III has applications beyond conventional database applications. It can be used in any
situation where referencing data with names is important.

54 Using Intuition's Proportional Gadgets from FORTRAN 77 by Joseph R. Pasek
Using Absoft's FORTRAN 77 to take advantage of most of the Amiga's ROM Kernel without writing
extra C or assembly language code.

62 FastBoot: A Super BootBlock by Dan Babcock

FastBoot is a bootblock that quickly loads an entire disk into memory, creates a RAM disk, and
boots from that RAM disk.

74 AmigaDOS for Programmers by Bruno Costa
If you want to delete files, find out file sizes, attributes or the amount of disk space, create or read
directories and even run processes from inside your program, read on!

82 Adapting MatteI's Power Glove to the Amiga by Paul King and Mike Cargal
Construct a special cable and write the necessary software that will interface the
Power Glove to the Amiga.

96 Silent Binary Rhapsodies by Robert Tiess
A poem for programmers.

Departments
4

49
81

Editorial
Source and Executables ON DISK!
List of Advertisers

DJComputers.cz

print f ("Hello") • ,

print "Hello"

JSR printMsg

say "Hello"

writeln("Hello")

Whatever language you speak, AC's TECH
provides a platform for both gaining insight

and sharing information on its most
innovative implementation for the A.niga.

Why not see if your latest programming
endeavor can help a fellow AlDiga user

expand upon his or her vocabulary? To be
considered for pUblication in AC's TEt::H,
submit your technically oriented article

(both hard copy & disk) to:

AC's TECH Submissions
PiM Publications, Inc.
One Currant Place
Fall River, MA 02722

ADMINISTRATION
Publisher: Joyce Hicks
Assistant Publisher: Robert J. Hicks
Admin. Assistant: Alisa Hammond
Circulation Manager: Doris Gamble
Asst. Circulation: Traci Desmarais
Corporate Trainer: Virginia Terry Hicks
Traffic Manager: Robert Gamble
Intlmatlonal Coordinator: Donna Viveiros
Marketing Manager: Ernest P. Viveiros Sr.
Marketing Associate: Greg Young
Programming Artist: E. Paul

EDITORIAL
Managing Editor: Don Hicks
Editor: Ernest P. Viveiros, Jr.
Associate Editor: Elizabeth Fedorzyn
Hardware Editor: Ernest P. Viveiros Sr.
Technical Editor: J. Michael Morrison
Technical Associate: Aimee B. Abren
Copy Editor: John Rezendes
Video Consultant: Frank McMahon
Art Director: William Fries
Photographer: Paul Michael
Illustrator: Brian Fox
Graphic Designer: Kim Kerrigan
Research &
Editorial Support: Alisa Hammond

Production Assistant: Melissa-Mae Lavoie

ADVERTISING SALES

Advertising Manager: Donna Marie

1-508-6711-4200
1-800-345-3360

FAX 1-508-675-6002

SPECIAL THANKS TO:
Richard Ward & RESCO
Steve at Printer's Service
Swansea One Hour Photo
Pride Offset, Warwick, RI

Mach 1 Photo

AC's TECH For The Commodore Amiga™ (ISSN 1053-7929) is pub·
lished quarterly by PiM Publications, Inc., One Currant Road, P.O. Box
869, Fall River, MA 02722-0869.

Subscriptions in the U.S., 4 issues for $44.95; in Canada & Mexico
surface, $52.95; foreign surface for $56.95.

Application to mail at Second-Class postage rates pending at
Fall River, MA 02722.

POSTMASTER: Send address changes to PiM Publications Inc., P.O.
Box 869, Fall River, MA 02722-0869. Printed in the U.S.A. Copyright©
1990, 1991 by PiM Publications, Inc. All rights reserved.

First Class or Air Mall rates available upon request. PiM Publications, Inc.
maintains the right to refuse any advertising.

PiM Publications Inc. is not obligated to return unsolicited materials. All
requested returns must be received with a Self Addressed Stamped
Mailer.

Send article submissions in both manuscript and disk format wHh your
name, address, telephone, and Social Security Number on each to the
EdHor. Requests for Author's Guides should be directed to the address
listed above.

AM IGA ThI is a registered trademark of
Commodore-Amiga, Inc.

DJC
om
pu
ter
s.c
z

IT MAKES A LOT OF SENSE TO BUY A MAST PRODUCT
• INTERNATIONAL AMIGA PERIPHERAL SUPPLIER· USA' GERMANY· AUSTRALIA' SWEDEN' UK • AUSTRIA

• TECHNICAL EXCELLENCE - Professionally driven, 60% of our senior executives are ENGINEERS.

• PERFORMANCE QUALITY PRODUCTS - We use PREMIUM COMPONENTS (FUJITSU Drives for example), INNOVATIVE DESIGNS (who else
has a SCSI INTERFACE with its own 68000 AND UP TO 2 MEG OF RAM), and some ot the most ELEGANT, not to mention smallest, external cases that
you will see in the industry. Cost effective designs, efficient mass production, and our worldwide resources, bring you high performance products at budget
prices. As our President answered to one customer who asked how we do it - "we're clever and we are not greedy"

BLITZ BASIC
GIVES YOU CONTROL OVER YOUR

AMIGA HARDWARE
CREATE YOUR OWN GAMES, GRAPHICS
PRESENTATIONS, AND EDUCATIONAL

PROGRAMS WITH MINIMAL
PROGRAMMING EXPERIENCE

IT'S NEW, ITS ULTRAFAST, IT'S EASY TO USE

Blitz Basic puts you in control of the Amigas custom sound and
graphics chips. Now you can write sophisticated programs
that previously needed 'C' or Assembler. Blitz is a fully integrated
programming language that puts you in control of your Amiga.
Unlike s-I-o-w interpreters, Blitz is a true compiler that generates
native object code.

Spectacular graphics can be generated with a minimum of
commands using the custom chip specific commands included
with Blitz. This Basic language enables you to produce QUAL­
ITY COMMERCIAL CODE.

$149
FEATURES:
• lightning Fast Compiler • Fast Optimised Object Code
• Rewrite of Amiga Graphics Libraries
• Integrated Editor/Compiler
• Special Effects such as FADE IN/ FADE OUT
• Basic Commands to handle IFF Brushes, Anim Brushes and
Sound Files

• Direct access to and control of Sprites, Blitter and Audio
Hardware

• Supports Dual Playfield, HAM & EHB
• Queue system makes blits easy to use
• Number of screens only limited by memory
• Verticallnterupt command allows smooth animation
• Double Buffering, Page Flipping are easily achieved
• Sound Sequencer included
• Machine Language Subroutines can be added

IMPORTANT NOTE - When you see the demo of VECTOR
BALLS, remember that the images are being CALCULATED IN
REAL TIME. This program alone should convince you of the
POWER OF BLITZ. The source listing will convince you of its
SIMPLICITY
Demo disks are available for $5. You may also load them off
the MAST BBS (702) 359 0132 or (702) 359 0137

FIREBALL - True DMA SCSI interface
for the A2000, for sustained perform­
ance in a multitasking computer $149

OCTOPLUS - 8 MB RAM for A2000
With 2Mb $269 Extra 2mb $119
GREAT VALUE!.

FANTASTICALLY FANTABULOUS
What else could describe a produduct that amazed

visitors to our booth at the LA Ami Expo

$495 COLORBURST $495
TRUE 24 BIT COLOR FOR ANY AMIGA

YES! Every Single pixel on your amiga screen can be any of 16.8 million
colors. The color is equal to or better than a Mac. Colorburst supports
many video modes and allows digital fade In/out. Dynamic white
balance correction is possible. Real time image processing is a reality.
It can be configured as a third hardware playfield allowing Amlga graph­
ics to be overlaid • great for animation. We do not use HAM or
Composite Y-C mixing, this is pure 24 bit RGB - there is no blurring of
colors or loss of definition with colorburst. This product generates
BROADCAST QUALITY IMAGES for both PAL & NTSC systems.

FURTHER INFORMATION ON THIS EXCITING PRODUCT IS A
III! MUST MAST MUST MAST MUST MAST MUST III!

WE CHALLENGE COMPETITORS TO MATCH OUR CLARITY, COLOR & PRICE

STARBLAZER
8 MB RAM & SCSI INTERFACE

FOR A500 AND A 1000

ENHANCED UNIDRIVE
The only Amiga external floppy drive in
the wor1d that includes digital track dis­
play, hardware write protect switch
and inbuilt hardware virus detection
system - for only $149 why would you

. want to buy any other. PS. The box looks
reat.

While many vendors want you to buy a hard
drive before memory (because their memory
expansions are inside the drive unit), we be­
lieve that many customers need memory first.
Additionally many people don't want a bulky
hard drive right beside the computer, our cus- UNIDRIVE
tomers prefer the flexibility offered by an inde- For those on a budget who still want a
pendant external drive that can be placed at a great looking, reliable and quiet drive,
convenient location and even plugged into a how about the good 0'1 Unldrive. At a
different SCSI interface on another computer. list price of $119, this is a very attractive
Starblazer is an 8 MB memory and SCSI deal.
interface in a miniscule case only slightly i A2000 Internal Floppy $83
larger than our very popular Minimegs. It is
available populated to 2,4,6,8 megabytes, Fujitsu Quality Hard Drives
with or withoutthe SCSI interface installed. 45 meg $339 90 meg $539
STARBLAZER is real zero wait state ram 136meg $669 182meg $770
that lets your Amiga run atfull speed. Don't be 410meg $1795 672meg $2295
misled into buying memory that plugs into the 1.2 GIG $3900
A501 slot and is advertised as "fast ram", it is SYQUEST INTERNAL $519
always slow old chip memory. Starblazer SYQUESTEXTERNAL$625
includes the MAST Bytemachlne SCSI Inter- CARTRIDGES $95
face. Starbiazer Plus includes WordMASTer
- a SCSI interface that uses a 16 bit interface EXTERNAL HARD DRIVES:

Tiny Tiger Deluxe - add $189 to
for high performance. When you need a hard internal drive prices
drive, just plug Tiny Tiger into the Bytemach- Tiny Tiger Budget _ add $129 to
ine or WordMASTer interface - it autoboots, internal drive prices
automounts and is very fast. Starblazer F=============\
with 2 MB included from $299. Call for
pricing options.
YOU HAVE TO SEE THIS TO BELIEVE
THAT THERE IS SO MUCH POWER IN
SUCH A SMALL PACKAGE

MAST MIDI INTERFACE with inte­
grated SMPTE to MIDI TIME CODE
CONVERTER. $199

fI'I"!I

Circle 160 on Reader Service card.

DJComputers.cz

STARTUP-SEQUENCE

Greetings!
Welcome to the Premiere Issue of ACs TECH For The

Commodore Amiga. ACs TECH is the first all-technical, disk­
based magazine designed for Amiga programmers and hard­
ware-types (or wanna-be's). In these pages (and on this disk!)
you'll find some the most interesting and informative technical
stories ever made available to the Amiga population.

As I said, this magazine was designed for you-the
technical Amiga user. You won't find any game reviews in ACs
TECH No show reports. Just technical, applications-intensive
information.

AC's TECH also includes a disk packed with informa­
tion, source code, executables, and other technical goodies (we
really had no choice-we simply couldn't publish the accompa­
nying multiple 50-page listings!). There is so much information
on the disk that we had to archive many of the directories.
There's lots to play with!

Whether you build the 256-grayscale digitizer, or
explore the possibilities of IPC with ARexx, or work with any of
the other superb stories in this issue of AC's TECH, you're sure
to be amazed!

Now, down to business!

To 2.0, or not to 2.0
I've heard some rambling on the various networks

concerning developers' apprehension to design their applica­
tions to take advantage of the features of AmigaDOS release 2,
their argument being that they don't want to require AmigaDOS
release 2 if it really isn't available to every Amiga (for the most
part, release 2 is seen on Amiga 3OO0s). This is a valid point, in
that most developers in the Amiga community are small, have
limited developmental resources, and need to design their
products to be compatible with the greatest number of Amigas
in use.

However, there is a catch-22 brewing in the distance.
Someday, AmigaDOS release 2 will be available for most
Amigas. It will, for many consumers, require a hardware
upgrade. These consumers are going to need a good reason to
upgrade to AmigaDOS release 2-specifically, software that
takes advantage of the new standard requesters, the virtual
screen capabilities of the new ECS chips, and all the goodies
that come with the AmigaDOS release 2 and the new Enhanced
Chip Set. While all this is going on, the other computer manu­
facturers are trying to woo the consumer (our Amiga owner)
into purchasing their sharp new units, quickly gaining ground
on the Amiga. Hmmm wasn·t release 2 intended to add stride
to the Amiga? And it's the software that will show off release 2.
It's all in the software! Gee ... what a concept.

4 AC's TECH

Software comes from developers. Software will make
or break the Amiga. Developers have to take the first step. Sure,
it will mean investing in both time and money, but if they want
the Amiga to advance, they really don't have much of a choice.
It's an investment in the future. After all, if the Amiga doesn't
expand, neither will their bUSinesses, or this magaZine, or ...

Stand and deliver
I'm making a big fuss about developing for AmigaDOS

release 2; however, you won't fmd any stories in this issue that
cover release 2 specifics. Why? The information in ACs TECH is
not basic information. ACs TECH is not a programmer's
reference. Rather, it is a forum for new techniques and innova­
tions for programming and hardware devotees. Right now there
really isn't any innovation in the AmigaDOS release 2 arena. We
are still learning the basics of programming for AmigaDOS
release 2. However, that small learning curve is quickly past.

I am calling upon the readers who have transcended
that learning curve. I want to hear from the people who are
programming with AmigaDOS release 2. What are you doing?
What are the good points and bad points? What about tips and
techniques? Are you using GadTools? What about programming
with boopsi? We're looking for applications. Let me know!

Send your letters to:

Ernest P. Viveiros, Jr.
AC's TECH/Project Release 2
P.O. Box 869
Fall River, MA 02720-0869

I promise to read every letter. After all, it's the Amiga's
future we're dealing with here.

Of course, we are eager to cover any type of true
Amiga innovation-be it AmigaDOS 2.0 manipulation, a video
hardware hack or a new algorithm to generate objects in 3-
dimensional space. Our scope is Amiga technical innovation in
general, and we intend to cover it preCisely and completely.

Editor

DJC
om
pu
ter
s.c
z

The Best Assembler
Macro68 Suggested retail price: US$150

Macro68 is a powerful new assembler for the entire line of Amiga personal computers.

Macr068 supports the entire Motorola M68000 Family including the MC68030, MC68882 FPU,
and MC68851 MMU. The Amiga Copper is supported also.

This fast, multi-pass assembler uses the new Motorola M68000 Family assembly
language syntax, and comes with a utility to convert old-style syntax source code
painlessly. The new syntax was developed by Motorola specifically to support
the addressing capabilities of the new generation of CPUs.

Macro68 boasts macro power unparalleled in products of this class.
There are many new and innovative asserroler directives. For instance,
a special structure offset directive assures maximum compatibility
with the Amiga's interface conventions. A user-accessible file
provides the ability to customize directives and run-time
messages from the assembler. An AREXX(tm) interface
provides "real-time" communication with the editor of
your choice. A number of directives enable Macr068
to communicate with AmigaDos(tm).

Possibly the most unique feature of Macr068 is
the use of a shared-Ibrary, which allows resident
preassembled include files for incredibly
fast assemblies.

Macro68 is compatible with the
directives used by most popular
assemblers. Output file formats
include executable object,
linkable object, binary image,
and Motorola S records.

Requires at least
1 meg of memory.

The Puzzle Factory, Inc.
P.O. Box 986
Veneta, OR 97487
Orders: (800) 828-9952

Customer Service: (503) 935-3709

Distributors for the U.S. and Canada Dealer Inquires Invited

"Quality software tools for the Amiga"

_ VISA, MasterCard, check or money order accepted - no COOs.

IIIiiiiiIII Amiga and AmigaDOS are trademarks of Commodore-Amiga, Inc.

Circle 168 on Reader Service card.

DJComputers.cz

Advanced Disassembling
Magic Macros with ReSource

by Jeff Lavin

Introduction
This article is not intended to be a primer on disassembly. We assume that you know how to disassemble

programs, and have a need to do so. What I hope to do here is show some of the more interesting and useful things
that may be done with ReSource. Some of these examples will use the macro facilities built into ReSource. Macros are
a very powerful concept. Just as macros may be used to make your life easier and cut down on typing in a macro
assembler, it is possible to think of ReSource as a macro disassembler. Macros similar to the ones shown may be
constructed for most repetitive uses. Macros are capable of testing values, and branching based on the outcome.

6 AC'sTECH

Fun with Gadgets
Since the Amiga's operating system and library calls depend heavily on

structures, it is rare to find a program that does not contain several or perhaps
hundreds of structures.

After disassembling a program, you may find the following in a data hunk:

OK Gad dl Exit Gad
dl $CS0030
dl $73000D
dl 5
dw $1001
dl OK_Berd
dw 0
dw 0
dl OK_IText
dw 0
dw 0
dw 0
dw 0
dw 0
dw 0
dw 1

A macro called "Gadget" (see Listing one) is invoked at this point, using
"LOCAL MACROS/Execute/Gadget". It is important to note several things about
this macro:

(1) It works on any (non-extended) gadget.
(2) All the data type conversions and other operations are done with one
keystroke, invoking the Gadget macro.
(3) When the macro gets finished with one gadget, it automatically moves to the
next gadget in the chain. This saves a lot of work when disassembling programs
with 50 gadgets. Forward referencing automatically stops when a null pointer is
reached.

DJC
om
pu
ter
s.c
z

The result is the very readable gadget stlUcture below.

OK Gad dl Exit Gad
dw 197,48,115,13
dw GADGHCOMP
dw (RELVERIFY lENDGADGET)
dw (REQGAOGETlBOOLGADGET)
dl OK Berd
dl 0
dl OK IText
dl 0
dl
dw
dl

Creating Image Data
In this example, we have a program that uses various

gadgets and images. There is one image that we would like to
modify and use in another program. You could use a Clip utility
to save the image as a blUSh, and then use another utility to
convelt the blUsh ro source code, but it is very easy to get
ReSource to do all the conversions in one step.

Here is the data that we found by tracing backwards
from gg_GadgetRender -> ig_ImageData:

My Image dl $FFFFOOOO
dl $1000380
dl $7COOFEO
dl $lFF03FF8
d1 $7C007CO
dl $7COOOOO
d1 $FFFFOOOO
dl $7C007CO
dl $7C03FF8
dl $lFFOOFEO
dl $7C00380
dl $1000000

The next thing we want is the width of the image. In this
case Width is equal to 15 so we set the data type to words-­
this being the lowest multiple of 16 greater than ig_ Width.
Repeated use of the functions:

DISPLAY/Set numeric base/binary
CURSOR/Relative/Next line * 1

gives us these nice an·ows to use in our code immediately.

My Image dw %1111111111111111
dw %0000000000000000
dw %0000000100000000
dw %0000001110000000
dw %0000011111000000
dw %0000111111100000
dw %0001111111110000
dw %0011111111111000
dw %0000011111000000
dw %0000011111000000
dw %0000011111000000
dw %0000000000000000
dw %:111111111111111

dw %0000000000000000
dw %0000011111000000
dw %0000011111000000
dw %0000011111000000
dw %0011111111111000
dw %0001111111110000
dw %0000111111100000
dw %0000011111000000
dw %0000001110000000
dw %0000000100000000
dw %0000000000000000

If the width is between 17 and 32, we would set the data
type to longs. Generally, find out if the width is a multiple of
words or longwords, and set the data type appropriately. For
really wide images, use your editor to combine lines, using
commas as separators.

Effective Address Conversion
Suppose you are disassembling a program. Normally, the

first thing you do is to find out if a base register is being used
for global variables and data stlUctures. Address register A4 or
A5 is generally used for this purpose. If a base register is being
used, you tell ReSource where it is pointing; that is, establish the
relative-base. ReSource then converts base offsets for you, from
the form:

move.l #$48454C50, ($26A,A5)

to the more readable:

move. 1 #$48454C50, (lbL021844-DT,AS)

where the symbol 'DT' is the relative-base, and is automatically
produced by ReSource, if not supplied by you. Please note that
nothing has really changed here. The values $26A and
'lbL021844-DT' in this program are identical. The obvious
difference at this point is that the code is much easier to read.

Even more impoltant is the fact that what was previously
defined as a simple offset is now defined as <label>-<label>.
Down the road, when you attempt to reassemble this file,
<lbL021844-DT> will be identical to $26A only if the data area
between both labels isn't changed; that is, if the labels are still
the same distance from each other. Changing the relative
position of either label makes the "$26A" offset incorrect, and
results in a bad executable, but <lbL021844-DT> will assemble
to the correct offset for this data item.

Back to our program. When you disassemble this
palticular program, the first thing you find is:

move. 1 #(MEMF_PUBLIClMEMF_CLEAR),dl
move. 1 #$548,dO
movea.l (AbsExecBase),a6
jsr (_LVOAllocMem,a6)
movea.l dO,a5
tst.l dO
beq.b lbC000032

It quickly becomes obvious in pelUsing the code that AS
is being used as the base register, but how do you convert all
the offsets? It would be so much Simpler if an absolute address
was being used as the relative-base. This type of situation

PREMIERE ISSUE 7

DJComputers.cz

What exactly is
the ReSource Diassembler?

ReSource is an interactive disassembler for Amiga
computers. There are several versions of ReSource
available; all require Amiga DOS V1.2 or later and at least
1 meg of RAM. The original ReSource runs on any Amiga
and produces conventional 68000 syntax assembly
output. ReSource'030 runs only on machines equipped
with a 0201030 CPU, and generates Motorola new syntax
code. ReSource'068 also produces new syntax code, but
will run on any Amiga. All examples herein were pro­
duced using ReSource'030.

If you would like more information, please contact:

The Puzzle Factory, Inc.
P.O. Box 986

Veneta, OR 97487
(503) 935-3709

comes up fairly often, not only with allocated memOIY, but also
with programs that use the stack for storage.

In this case, we load the file into ReSource again, but this
time as a binmy file, rather than as an executable, so that
ReSource doesn't strip the hunk information. The first thing we
need to do is use "DISPLAY/Set data type/Longs" to make the
entire file display as longwords. After defining some hunk types,
it now looks like this:

dl HUNK_HEADER
dl 0
dl 1 ;Number of hunks in this file
dl 0
dl
dl $3B4 ;Number of longwords of memory

;to allocate for this file
dl HUNK_CODE
dl $3B4 ;Number of longwords

;to copy into this hunk
dl

What we are going to do is create some extra room at
the end of the file for our base-relative variables. We know from
the code that the allocated memOlY is cleared, so we don't have
to wony about static data stlUctures being referenced. We also
know that the program is asking for $548 bytes of memory. This
is equal to $152 longwords, so we need to change the value at
offset $14 to ($3B4 + $152) or $506 longwords. If the size of the
allocated memory is not evenly divisible by 4, just round up.

Select "SPECIAL FUNCTIONS/Zap" and when the
requester comes up, we enter "\.$506". The "\." tells ReSource
to change a longword rather than a word or byte. Then select
"SAVE/Save binalY image/all" and save the file under a
d(fferent name.

8 AC's TECH

Now load the modified file, this time as an executable.
When we move to the end of the file we see:

dx.b $S48 ;The size of our original ' .. ,"O:."X: a=ea.

which is exactly what we wanted! After placing this line at the
cursor position, select:

SPECIAL FUNCTIONS/Specify base register/AS ;Change base
; register

SPECIAL FUNCTIONS/Convert (xx,AS) EA's/This address

and at the top of the file (remember, there was only 1 hunkO,
now see:

DT equ *+$OEDO ;Offset from start of program to
;work area.

This is our new relative-base. Memory is still allocated
and (we fervently hope!) freed, but when this file is
reassembled, the "DX" (Define eXtra) area at the end of the
program will hold our variables. Selecting "PROJECT/Disas­
semble" indeed shows that all our base-relative offsets have
been converted. We now have a much easier time figuring out
how this program works.

Most of the time this hack works perfectly. After aU,
Lattice and Manx have been doing it for years! Sometimes,
however, you will convert a program and it won't IUn. Although
the AmigaDOS file system is beyond the scope of this article,
there are several "gotchas". The main thing to remember is not
to add "DXs" to an empty hunk. If you find an empty hunk at
the end of tile file, just before the "DXs", either add a dummy
line of data, or delete that SECTION statement, and add the
"DXs" to the end of the previous hunk.

Here are a few thoughts on "DXs". This 'data type' results
in much smaller load files. The size of the file on disk does not
include the "DXs". The main difference between a "DX" and a
BSS hunk, is that the "DX" must be cleared by your program,
not by the loader. This is easy enough to accomplish with the
following code, which preserves DO/ AO:

1$

lea
lea
move.w
moveq
move.l
dbra

(DT) ,a5
(BSS_Start-DT),a1
(BSS_Len/4)-1,d2
to,dl
dO, (d1) +
dl, ..

;Our relative base
; Start of the "DXs"
; Size of the. "DXs" in bytes

Although they have been available to Lattice and Man:\(C
users for years, "DXs" have only been available to assembly
language programmers for a short time, and only on a few
assemblers. DigiSoft's Macr068 is one assembler that supports
this feature.

Coping with Library Stubs
Anyone who has ever attempted to disassemble a

program written in C, in the era before pragmas and inline
code, has come up against library stubs. A library stub is a
horrible little piece of code that takes up space and converts C
arguments (passed on the stack), into system arguments (passed

DJC
om
pu
ter
s.c
z

in registers). Here's one now:

lbC013932 movea.l (lbLOIF4DC-DT,a4),a6
movea.l (4,sp),al
move. 1 (8,sp),dO
jmp (-$228,a6)

There are frequently anywhere from 50 to hundreds of
these stubs in a program; some of them are not even refer­
enced! ReSource makes it velY easy to convelt the library offset
to human readable form. After you find out what's in the library
base register (A6), select the appropriate librmy symbol base:

IbC013932 movea.l (_SysBase-DT,a4),a6
movea.l (4,sp),al
move.l (8,sp),dO
jmp (_LVOOpenLibrary,a6)

But there remains that unreadable label! It is easy to type
labels by hand when there are just a few, but after pages of
them, it gets old fast! The macro "Create LibCall Names" (see
Listing two) solves this problem easily.

BaSically, the macro starts by searching for either of these
strings:

jsr (_LVO

jmp (_LVO

When one is found-for example, "jsr
CL VOOpenLibrary"-ReSource gets the symbol, which in this
case is "_LVOOpenLibrary", and puts it in the accumulator,
which is the main string-manipulating buffer in ReSource. The
"_L VO" at the beginning is clipped off, and a "_" is added to the
front. Now we have "_OpenLibrary", which works nicely as a
label. ReSource then moves back to the previous label,
"lbC013932", and creates a new label for us. Now, our libralY
stub looks like this:

_OpenLibrary movea.l (_SysBase-DT,a4),a6
movea.l (4,sp),al
move.l (8,sp),dO
jmp (_LVOOpenLibrary,a6)

ReSource then searches for the next label, and the macro
ends. We can process hundreds of these nasty libralY stubs
qUickly, simply by using the "Repeat last command" key­
typically, bound to the spacebar.

Reconstructing MFM Data
LOSing data through failure of magnetic media must

surely be one of the most fmstrating experiences. Although
many people use hard drives now, most still need floppy disks
for backup purposes, and when your hard drive "goes down",
the last thing you need to find out is that your backup disks
have ,I read error.

Many floppy disk read errors are actually the result of
only one bit being wrong. As a complete disk contains over
seven million good bits, it follows that if the bad bit can be
identified and fixed, most or all of the data can be recovered.
Using the philosophy that the problem is really only in a
specific area on the disk, we will attempt to localize that area,
and then to recover as much data as we can.

First, use the "PROJECT/Read tracks" function in
ReSource to find the unreadable track. Next, we need a separate
program capable of reading raw MFM data, not the system data
that sector editors read. It must also be capable of reporting the
address of its track buffer. There are available several disk
utilities, or monitors, that meet these criteria.

Use that utility to read the raw track. While the raw data
is still in the utility'S buffer, switch to ReSource, and select
"PROJECT/Dismble memory". When the requester comes up,
enter the address of the disk utility's track buffer, and use the
"SAVE/Save binary image/All" function to make this into a
normal binalY file. After loading this file into ReSource by using
"PROJECT/Open binalY file", you may exit the utility, and stan
examining the raw track data in ReSource.

What we will be attempting to do next is to recover as
many good sectors from the track as pOSSible, by converting
each sector from MFM to hex individually. While at the stan of
the file, select the "DISPLAY/Set data type/Words" function. To
find the start of the first sector, look for the hex word "$4489".
Scroll to just past this word. If the next word is also "$4489",
scroll past it also. Set the data type to longwords, using "DIS­
PLAY/Set data type/Longwords". LJse the "Convert MFM
encoding" macro, and if the sector header is okay, it should
now have some full-line comments on the cun'ent line:

Format byte = $FF
Track = 0
Sector = 7
Sectors to GAP = 4

dl $552AA92A
dl $552AA524
dl $AA. 'lllAAA
dl $ AA.n.:AAAAA

PREMIERE ISSUE 9

DJComputers.cz

The format byte should always be $FF, whenever reading
Amiga disks. The track number should be the same as the one
that you originally read. The sector number must be 0-10
inclusive, and "Sectors to GAP" must be equal to eleven minus
the sector number. If any of these conditions ,fail, chances are
that either you haven't found the true start of a sector, or the
sector header information itself is damaged.

The "Calculate MFM xsums" macro works out the header
checksum, and the data block checksum, as they are defined in
the header block itself:

byte = $FF
Track number = 0
Sector number = 10
Sectors to GAP = 2

dl
dl
dl
dl
dl

$552AA529
$ 552AAAAA
$AAAAAAAA

$AAAAAAAA

$i'.AAAAAAA
d 1 $ AAi'.F.AAAA

dl $AAAAAAAA

dl $AAAAAAAA
dl $AAAAAAAA
dl $ i'.F.AAAAAA

Header block checksum = $00000501
dl $AAAAAAAA

dl
Data block checksum = $10015541

dl $2AAAAAAA
dl $92A95549
dl $2AAAAAA4

The full-line comment (above) giving the data block
checksum is followed by the two longwords making up the
checksum. Immediately following this is 1024 bytes of MFM
data. Scroll to the start of the MFM data, and use the "Conv
MFM sector to HEX" macro to convert each longword of MFM
into hex. To convert a complete sector, this must be done 128
times. The macro "Convert [vIFM 128 times" will do this. Note
that the macro line, "GLOBAL MACROS/ Execute/(#14)" refers
to the macro number of "Conv MFM sector to HEX", and may
be different on your system. After converting to hex, the section
start looks something like this:

Format byte = $FF
Track number = 0
Sector number = 10
Sectors to GAP = 2

dl
dl
dl
dl
dl
dl

$552AA529
$ 552AAAAA
$AAAAAAAA

$AAAi'.AAAA

$MAAAAAA
d 1 $ AAAJo.Al\J..A

dl $AAAAAAAA

dl $AAA.r..AAAA
dl SAAAAAAAA

Header block checksum = $00000501
dl $AAAAAAAA

dl $AAAAA529
Data block checksum = $10015541

dl $2AAAAAAA

dl $92A95549

10 AC's TECH

dl $ 2AAI'>AAA4 $000000C8
dl $MAAi'.9 51 $000003£6
dl $2AAAAAA9 $0'0000002
dl $2MAAi'.54 $OOOOOlE8
dl $ AAA.".AAJ.. 9 $00000006
dl $24454955 $189FD3BE
dl $12911114 $35363738
dl $949294 % $39302D3D
dl $A4929292 $5C203071
dl $91129112 $77657274
dl $94929495 $7975696F

Depending on what is actually wrong with the track, you
will normally be able to salvage 10 of the eleven sectors, and
possibly some of the bad sector as well. Salvaging data is velY
ditTicult to completely automate, but when you really need to
salvage as much data as pOSSible, these macros may make the
job much easier for you. The hex data is displayed in the end­
of-line comments above.

Because there may be many things wrong with the data,
and our space is limited, we will not discuss various methods of
repairing sector headers, disk tracks, or rewriting the recon­
structed data out to disk. There are programs available to do
this sort of thing with less work and less opportunity for human
error. Our purpose here is to illustrate, in a general way, how
the macro capabilities of ReSource may be used for complex
tasks.

That's All Folks!
Because it is a m.acro disassembler, the things that may

be done with ReSource are limited only by your imagination. I
hope I have shown a representative sample of some of the
things it is possible to do with ReSource.

About the Author ------,

Jeff Lavin and his wife Grace own The
Puzzle Factory, which publishes the
ReSource disassembler, and Macro68
assembler. Jeff was introduced to assembly
language during the home brew-computing
days on his SYM-l, and has been program­
nung in assembly ever since. You may
contact Jeff through The Puzzle Factory, or
write to him c/o AC's TECH.

DJC
om
pu
ter
s.c
z

Listing One
The GADGET macro

Listing Two
The CREATE LlBCALL
NAMES macro

The following m.acros m.ay be entered into ReSource,
after which you m.ay want to save them., by selecting
"LOCAL MACROS/Save all m.acros".

LABELS/Edit single/Full-line comment
DISPLAY/Set data type/Longs
CURSOR/Relative/Next line * 1
DISPLAY/Set data type/Words
CURSOR/Relative/Next line * 4
DISPLAY/Set data type/Bytes
CURSOR/Relative/Previous line * 4
DISPLAY 2/Multiple constants override/Set
DISPLAY/Set Numeric base/Decimal
CURSOR/Relative/Next line * 1
DISPLAY/Set data type/Words
SYMBOLS 2/E-G/Gadget flags
CURSOR/Relative/Next line * 1
SYMBOLS 2/E-G/Gadget activation
CURSOR/Relative/Next line * 1
SYMBOLS 2/E-G/Gadget types
CURSOR/Relative/Next line * 1
DISPLAY/Set data type/Longs
CURSOR/Relative/Next line * 5
DISPLAY/Set data type/Words
DISPLAY/Set Numeric base/Decimal
CURSOR/Relative/Next line * 1
DISPLAY/Set data type/Longs
CURSOR/Relative/Next line * 1
LABELS/Edit single/Full-line comment
CURSOR/Relative/Previous line * $10
CURSOR/Absolute/Forward reference

;Create a blank line above gadget.
;Ptr to next gadget.
iMove to next line
;These are all WORDS.
;Move past next 4 words and change
;data type.
;Move back to coordinates.
;Force coordinates all on 1 line
;and display them in decimal.
iMove to line.
;These are also WORDS.
;Equate gadget flags.
;Move to next line.
iEquate gadget activation.
;Move to next line.
;Equate gadget types.
;Move to next line.
;These are all LONGS.
;Skip down 5 lines.
;Set gg_GadgetID to WORD.
;and display it in decimal.
iMove to next line.
;Set gg_UserData to LONG.
;Move to next line.
;Create a blank line.
;Move back to top of gadget.
;Follow reference to gg_NextGadget.

CURSOR/Normal search/Set search string "j{mplsr)<tab>(_LVO"
CURSOR/Pattern search/Find next occurence
STRINGS/Get/Symbol
STRINGS/Edit functions/Clip start "_LVO"
STRINGS/Edit functions/Prepend
CURSOR/Relative/Previous label
STRINGS/Put label
CURSOR/Relative/Next label

;Either "jsr {_LVO" or "jmp (_LVO".
;Put symbol in the accumulator.
;Clip off the "_LVO".
;Add "_0 to the front.
;Find this stub's label.
;Create our new label.
;Wait at next possible stub.

PREMIERE ISSUE 11

DJComputers.cz

Listing Three
Convert MFM
encoding macro

12 AC's TECH

STRINGS/Accumulator/Hex
STRINGS/Operand size/Longword
STRINGS/Get/Cursor Longword
STRINGS/Maths functions/Logical AND "$55555555"
LOCAL MACROS/Directives/End conditional

CURSOR/Relative/Previous line * 1
CURSOR/Copy/Clip #1

CURSOR/Relative/Next line * 1
STRINGS/Baths functions/Add $lB,$lB

LOCAL HACROS/Directives/End conditional

STRINGS/Swap with buffer .. / A
CURSOR/Relative/Next line * 1
STRINGS/Get/Cursor Longword
STRINGS/Maths functions/Logical AND "$55555555"
STRINGS/Maths functions/Logical OR $IB,"a"

CURSOR/Relative/Previous line * 1
STRINGS/Define string/ A $lB,$lB
STRINGS/Edit functions/Clip end "??????"

STRINGS/Edit functions/Prepend "Format byte
LABELS/Edit single/Full-line comment $IB,$IB
STRINGS/Define string/Acm SIB,"a"
STRINGS/Edit functions/Clip start "???"
STRINGS/Edit functions/Clip end "????"
STRINGS/Edit functions/Prepend "S"
STRINGS/Accumulator/Decimal

STRINGS/11aths funct ions/ Increment
LOCAL HACROS/Directives/End conditional

S'l'?-INGS/Naths functions/Decrement

LOC.lI..L conditional

STRINGS/Edit functions/Prepend "Track number
Li'BELS/Edit single/Full-line comment SlB,SI3
STRINGS/Define string/Acm $15,"a"
STRINGS/Edit functions/Clip start "?????"
STRINGS/Edit functions/Clip end "??"
STRINGS/Edit functions/Prepend "S"
STRINGS/Maths functions/Increment
LOCAL HACROS/Directives/End conditional
STRINGS/Maths functions/Decrement
LOCAL HACROS/Directives/End conditional
STRINGS/Edit functions/Prepend "Sector number

LABELS/Edit single/Full-line comment $lB,$IB
STRINGS/Define string/Acm $lB,"a"
STRINGS/Edit functions/Clip start "???????"
STRINGS/Edit functions/Prepend "$"
STRINGS/Maths functions/Increment
LOCp.L conditional

STRINGS/Maths functions/Decrement
LOCAL MACROS/Directives/End conditional
STRINGS/Edit functions/Prepend "Sectors to GAP
LABELS/Edit single/Full-line comment $lB,$lB
CURSOR/Paste/Clip #1
CURSOR/Relative/Next line * 1

;Ensure accumulator displays HEX
;Ensure default size longword
;Get longword at cursor position
;AND out unwanted bits
;Don't abort macro if above
;returned zero
;Move up one line
;Remember current cursor position
;within file
;Go to next line
;Whatever is in accumulator, add
;to itselfl
;Don't abort macro if above
;returned zero
;Store result in buffer "AN
;Go to next line
;Get longword at cursor position
;AND out unwanted bits
;Logically OR with contents of
;buffer "A,N

;Go back one line
;Copy accumulator to buffer "AN
;Clip last six characters from
; accumulator
;Add required text
;Create comment, using accumulator
;Copy buffer "A" to accumulator
;Strip unwanted characters
;Strip unwanted characters
;Put dollar sign back
;Require number displayed in
; decimal
;Add 1 to accumulator
;Don't abort if above returned
;zero
;Subtract 1 (ensures number is
;decimal)
;Don't abort if above returned
izera
;Add required text
;Create comment I using accumulator
; Copy buffer ""AU to accumulator
;We want 2nd LSB this time
;Don't want LSB
;Put dollar sign back
; Convert hex to decimal
; Convert hex to decimal
; Convert hex to decimal
; Convert hex to decimal
;Add required text
;Create comment, using accumulator
;Copy buffer "AN to accumula"c.or
;Require LSB this tlme l
;Put dollar sign back
;Convert hex to decimal
;Convert hex to decimal
;Convert hex to decimal
;Convert hex to decimal
;Add required text
;Create comment, using accumulator
;Go back to original line -1
;Finish on original line

DJC
om
pu
ter
s.c
z

Listing Four
Calculate MFM
xsums macro

Listing Five
Convert MFM sector to
HEX macro

CURSOR/Relative/Next line * 10
STRINGS/Accumulator/Hex
STRINGS/Operand size/Longword
STRINGS/Get/Cursor Longword
STRINGS/Maths functions/Logical AND "$55555555"
LOCAL MACROS/Directives/End conditional
STRINGS/Swap with buffer .. / A
CURSOR/Relative/Next line * 1
STRINGS/Get/Cursor Longword
STRINGS/Maths functions/Logical AND "$55555555"
LOCAL MACROS/Directives/End conditional

STRINGS/Swap with buffer .. / A
STRINGS/Maths functions/Add $IB,$IB

LOCAL MACROS/Directives/End conditional

STRINGS/Maths functions/Logical OR $IB,"a"

STRINGS/Edit functions/Prepend "Header checksum
CURSOR/Relative/Previous line * 1
LABELS/Edit single/Full-line comment $IB,$lB
CURSOR/Relative/Next line * 2
STRINGS/Get/Cursor Longword
STRINGS/Maths functions/Logical AND "$55555555"
LOCAL MACROS/Directives/End conditional

STRINGS/Maths functions/Add SlB,$lB

LOCAL MACROS/Directives/End conditional

STRINGS/Swap with buffer .. / A
CURSOR/Relative/Next line * 1
STRINGS/Get/Cursor Longword
STRINGS/Maths functions/Logical AND "$55555555"
STRINGS/Maths functions/Logical OR $lB,"a"

CURSOR/Relative/Previous line * 1
STRINGS/Edit functions/Prepend "Data block checksum
LABELS/Edit single/Full-line comment SlB,SlB
CURSOR/Relative/Previous line * 8

CURSOR/Copy/Clip #2
STRINGS/Get/Cursor offset
STRINGS/Maths functions/Add "$200"
CURSOR/Absolute/Specify offset $lB,$lB
STRINGS/Get/Cursor Longword
STRINGS/Maths functions/Logical AND "S55555555"
LOCAL MACROS/Directives/End conditional

STRINGS/Swap with buffer .. / A
CURSOR/Paste/Clip #2
STRINGS/Get/Cursor Longword
STRINGS/Maths functions/Logical AND "$55555555"
LOCAL MACROS/Directives/End conditional

STRINGS/Maths functions/Add $IB,$IB

LOCAL MACROS/Directives/End conditional

STRINGS/Maths functions/Logical OR SIB,"a"

LOCAL MACROS/Directives/End conditional

LABELS/Create single/End-of-line comment SlB,$lB
CURSOR/Relative/Next line * I

;Move down 10 lines
iSet accumulator to hex
;Set accumulator size to longwords
;Get a longword into accumulator
;AND out unwanted bits
iDon't abort if above returned zero
;Store result in buffer "AU
;Move to ne.:-:t line

;Get a longword into accumulator
;AND out unwanted bits
;Don't abort macro if above returned
izero
;Store result in buffer "An
;Whatever is in accumulator, add to
;itself!
;Don't abort macro if above returned
;zero
;Logically OR with contents of
;buffer "A"
;Add required text
;Move up one line
;Create comment, using accumulator
;Move down two lines
;Get longword at cursor position
;AND out unwanted bits
;Don't abort macro if above returned
; zero
iWhatever is in accumulator, add to
; itself!
;Don't abort macro if above returned
;zero
;Store result in buffer "A"
;Move down one line
iGet longword at cursor positlon
;AND out unwanted bits
;Logically OR with contents of
;buffer "An
;Move up one line

" ; Add required text
;Create comment, using accumulator
;Move down 8 lines

;Rernember this position!
;Where are we?
;Add sector size to current offset
;Go there!
;Get longword at cursor position
;AND out unwanted bits
;Don't abort macro if above returned
izera
;Store result in buffer "A"
;Go back to original position
;Get longword a-:: cursor position
;AND out unwanted bits
;Don't abort macro if above returned
; zero
;Whatever is in accumulator, add to
;itself!
;Don't abort macro if above returned
izera
;Logically OR with contents of
;buffer "A"
;Don't abort macro if above returned
; zero
;Create end-of-line comment
;Move down one line

PREMIERE ISSUE 13

DJComputers.cz

Listing Six
Convert MFM 128 times
macro

STRINGS/Define string/ G "128 M

LOCAL MACROS/Set macro label/#l
GLOBAL MACROS/Execute/ (#14)
STRINGS/Swap with buffer .. / G
STRINGS/Maths functions/Decrement
STRINGS/Swap with buffer .. / G
LOCAL MACROS/Previous macro label/#1

MISSED AN ISSUE?

;Number of times to repeat
;Mark this position in macro
;Macro function to be repeated
; Swap accumulator i.'lith b'l7.ffer "GI/
iSubtract 1 (ensures number is decimal)
;Swap accumulator with buffer "G N

;Repeat until zero

CHANGE OF ADDRESS?
SUBSCRIPTION PROBLEMS?

CALL US! 1 -800-345-3360

FOR OVER 15 YEARS KRUEGER HAS SUPPLIED
THE HIGHEST QUALITY REMANUFACTURED IC'S
AVAILABLE.

THE ONLY IC REFURBISHMENT HOUSE IN THE
WORLD LISTED IN THE I.C. MASTER.

WE CARRY:
PROCESSORS
CO-PROCESSORS
DRAMS
SRAMS
EPROMS
LOGIC

MOTOROLA
INTEL
HARRIS
AMD
WESTERN DIGITAL
NEC
FUJITSU
HITACHI
TI

68030 ACCELERATOR BOARDS AVAILABLE
FOR $350.00

WE ALSO CARRY PRODUCTS FOR IBM PC'S AND

COMPATIBLES.

(800) 245-2235 (602) 820-5330
FAX (602) 820-1707

Circle 116 on Reader Service card.

14 AC's TECH

DJC
om
pu
ter
s.c
z

HIGH PERFORMANCE
·Up to sox increase in execution speed over interpreted BASIC
• Fully compatible with Amiga BASIC interpreter
• Compiler generates fast, native 68000 machine code
• Support for 16/32 bit integers and 32/64 bit floating point numbers
• Supports both IEEE and BCD (Decimal) math
• Program and data sizes limited only by available memory and disk capacity
• Fast compiler; processes thousands of lines per minute

PROFESSIONAL FEATURES
• ACIBASIC is a complete package. Unlike other BASIC compilers, no addi­

tionallibraries are required for ROM kernel access, and no "runtime
modules" are required to distribute compiled applications

• Complete 100% access to ROM kernel O/S services
• Absolutely NO fees or charges to distribute compiled programs
• Batch compiling
• Environmental editor allows customizing runtime environment
• Dynamic runtime linking, or link runtime during compile

EASY TO UNDERSTAND AND USE
• Full BASIC reference manual included. Every BASIC statement is completely

defined and explained
• Compiler runs from Workbench or CLI and has intuitive user interface
• Working examples provided in manual and on disk
• Large example programs included. Great for learning or for use in your

own software

FULLY COMPATIBLE WITH INTERPRETER
• Develop applications with interpreter, then turn up the speed by compiling

into stand-alone applications, with no source code changes
• Compiler implements Microsoft BASIC language definition for maximum

compatibility with interpreter

ENHANCING OLDER PROGRAMS
• Multi-way logic made simple with SELECT CASE statement
• STATIC keyword for extremely fast array processing
• Dynamic subprograms support recursion

CREATE EASILY PORTABLE APPLICATIONS
• ACIBASIC runs on Amiga, Apple IIGS, and Macintosh (as Microsoft

BASIC compiler)
• Standard language definition simplifies machine ports
• Port applications to/from Macintosh, IBM PC, and MS DOS environments

AlsoAvailable-AC/FORTRAN ab§i!!ft
VAX/VMS compatible ANSI 77
compiler witTz full screen source level
symbolic debugger, linker, library man­
ager. IEEE math, C interface, supports
virtual arrays,. No limit on code or data
size. 68020/030 version also available.

High Performance ScientlflclEnglneerlng Software

2781 Bond Street
Rochester Hills, MI 48309 USA
Tel: (313) 853-0050
Fax: (313) 853-0108
BBS: (313) 853-0000
ALL llAND 01 PRODUCT NAMIB All PROPERTY OFTIIElR RD.BCTIVr. IIOLDER. ..

Circle 166 on Reader Service card.

DJComputers.cz

The Use of Recursive Programming
Techniques in Conjunction With
DOS and EDIT for Hard Disk Backup

by Mark D. Pardue, PhD

The objectives of this article are:

(1) To demonstrate the use of recursive programming techniques;
(2) To also demonstrate the use offiles as "templates "for EDIT commands; and
(3) To present an example hard disk utility developed using only DOS commands
and the EDIT line editor.

This utility was developed for a particular Amiga configuration, and as such, is
useful only as a demonstration of the concepts discussed here, unless it is custom­
ized to work with other configurations.

16 AC's TECH

Introduction
The development of this hard disk backup utility came

about one day as I attempted to justify keeping the line editor
EDIT on my hard disk, in addition to Ed and TxEd, which are
my workhorse editors. Further, I had been trying for several
months to find a utility that would allow me to back up my
primary hard disk (DHO:) to my secondary hard disk (JRO:)-an
IBM hard disk connected through the A2088 Bridgeboard on my
Amiga 2000. Now, I realize that I could copy all files from DHO:
to]HO: every time that I wanted to do an incremental back up,
but this is an unduly lengthy process. I could also buy a C
compiler (or other language software) and write a backup
program, but I didn't want to spend the money. Finally, I could
use good old AmigaBASIC, but I just don't like it that much (so
much for user preferences).

So, I decided to investigate developing the hard disk
backup utility using DOS, thinking that would provide an easy,
straightforward solution. I'm not sure how easy it was, but by
doing it, I learned a lot of useful details about DOS, EDIT, and
recursive programming techniques. The purpose of this article is
to pass some of that information along to other Amiga users,
and hopefully provide a simple hard disk backup utility that
people can use until such time as they can afford a good
commercial backup program.

Hard Disk Backup Using DOS Functions
As you know, AmigaDOS has no built-in backup function

such as that found in MS-DOS. There are several commercial

DJC
om
pu
ter
s.c
z

Figure 1 DHO:

Example

r I

TRANSFER
MP
EMPTY FOLDER. INFO.

I -r I
Di recto ry/
Subdirectory
Structure ARCHIVES SPREADSHEETS C DEVS •••

ARCHIVE
ARCHIVE1
ARCHIVE2

backup programs available, but I wanted to build one myself,
using only DOS functions. I did not want the files compressed;
in fact, I wanted the same file and directory stlUcture on the
backup disk so that I could immediately operate directly from
that disk if my primary disk failed. The COpy and PROTECT
commands can be used to first copy a file and then set the
"archive" bit for that file. However, there is no direct way to
have the COpy command copy only those files that do not have
their archive bit set (Le., those files that have changed since
they were last archived).

AmigaDOS does provide a way to get a list of files and
the status of their archive bits through the LIST command. The
LFORMAT option of the LIST command even lets the user tailor
the output to a degree. However, there is no method to have
the LIST command list only those files with archive bit not set.

One solution to this problem is to use the LIST command
to redirect the output to a file, then to edit that file with the line
editor EDIT to develop a list of those files with archive bit not
set. Finally, this list of files can be further edited to inselt
"COpy" before each filename to create a script file for copying
those files that have changed since the last backup. Executing
this script file copies the changed files, and then the files only
need to have their archive bit set to indicate that they have now
been backed up. Unfortunately, there is no easy way to
accomplish this (again unlike MS-DOS, which allows the copy
and archive bit setting to take place together, using the XCOPY
command). However, we can repeat a part of our process
above, substituting "PROTECT +a " for the word "COpy" in the
last file edit.

- 1989TAXES

SCHEDULE A
SCHEDULE B
SCHEDULEC

'--- BUSINESS

INCOME STATEMENT
NET WORTH
INVENTORY 1989

A Special Feature of Edit,the Line Editor
At this point in the development process, a problem

arose: "How do I edit the file listings output from the LIST
command?" The same editing commands have to be used every
time the backup utility program is run, but I definitely wanted
the editing to be automatic. I'm sure that there are other ways to
automate such a process using ARexx, C, or Modula-2, but not
having any of these tools (like many Amiga owners, I'm sure), I
turned to EDIT.

As mentioned above, one day I was doing housekeeping
on my hard disk, trying my hardest to find a reason to keep
EDIT on the disk. I use Ed and TxEd regularly, and one more
line editor seemed unnecessary. But I kept EDIT on my hard
disk, due mainly to its unique capability to edit one file using
another file of EDIT commands. Later, I used it in developing
this utility.

Recursion
The basic program stlUcture was now established. The

LIST command could be used to list just the files in a directory,
using the FILES option, and then these files could be backed up.
The LIST command could then be repeated to list only
subdirectories in this particular directory, using the DIRS option.
At this point, the entire process of listing files, backing them up,
then listing the subdirectories in the directory needed to be
repeated for each of the subdirectories in the first (sub)directory
encountered (see Figure 1). This process would go on and on
until the bottom of the directory tree was reached. The program
must return to the top of the tree and then repeat the process,

PREMIERE ISSUE 17

DJComputers.cz

over and over, until all directories have been backed up. This
type of program lends itself to a technique known as recursion.

Recursion is the process whereby, in the execution of a
program, that program calls itself repeatedly until execution is
complete. In the case of a backup utility, the program need only
back up one directory, then go into each of its subdirectories
and call itself. When it calls itself in the first subdirectory, that
subdirectOlY becomes the directoIY that the newly-called
program acts upon. The original calling program waits until the
called program has completed its backup of the first
subdirectOlY before it proceeds to backing up the second
subdirectOlY, by calling itself again. The power of recursion,
though, lies in the fact that as part of the process of backing up
the first subdirectory, the newly-called program may have to call
itself to back up a subdirectory of that subdirectory. This nesting
of calling and called programs is limited only by the capabilities
of the machine that the program is running on, and such things
as stack size.

This process of recursion makes our job of developing a
backup utility that much easier. We only need to develop a
simple program that will back up one directory and then call
itself to back up its subdirectories. That program must:

(1) list the files that are to be archived;
(2) copy those files;
(3) set the archive bit of the files;
(4) list the subdirectories; and
(5) go into each subdirectoIY and call itself.

That is the entire process. The recursion ensures that all
files in all subdirectories are backed up, no matter how compli­
cated the directory structure. The process is started, and each
piece of the process stops when it is completed. The very first
calling program automatically stops executing when all called
programs have completed execution. The calling and called
programs are simply different invocations of the same program.
All of these invocations are kept track of by the operating
system.

That's all there is to recursion. It has an almost magical
way of perfoffi1ing a complicated task with a very simple
program. It just breaks down a complicated task into smaller,
less complicated tasks, each of which is accomplished by the
same simple program.

Details of the Hard Disk Backup Utility
The backup utility is started by a script file appropriately

called BACKUP. The listing for BACKUP is shown in Figure 2. It
first clears the screen, then uses PROTECT to set the archive bit
for any file that is not to be backed up (in my case, an MS-DOS
backup file). Next, it displays a message that the backup is
beginning. Then, the recursive program ARCHIVE is called. This
is the program that actually performs the backup; it will be
discussed in detail below. It resides in the ARCHIVES directOlY
along with all of the support files required for its operation.
When the ARCHIVE program has finished execution (Le., the
backup is complete), that message is displayed, temporary
working files are deleted, and the directory is changed to the
desired current directory (in my case, DHO:).

18 AC's TECH

The listing for the ARCHIVE program is shown in Figure
3. Each line of the program will be explained separately below.

(1) .KEY path,slash

As you can see, the parameters <path> and <slash> are
passed to the program via .KEY. The <path> and <slash>
parameters are appended to the phrases "DH" and "]H", and are
passed down through the recursive caIling of the program.
BACKUP passes the initial values of <path> as 0 and slash as :.
Later, these parameters are used to give the phrases "DHO:" and
"]HO:", the desired source drive and destination drive, respec­
tively. This somewhat unorthodox setting of these parameters is
required to support the rest of the program calls. For example,
in later calls of the program, <path> could be set to O:Spread­
sheets and <slash>.could be set to I. This allows the filename
TAXES to be appended to the phrases to give
"DHO:Spreadsheets/TAXES" and "]HO:Spreadsheets/TAXES" for
source filename and destination filename, respectively. This will
be demonstrated as more of the program details are explained
below.

(2) .DEF slash /

Except for the first invocation of the program when
<slash> is set to :, all other occurrences of <slash> are desired to
be the slash symbol used to set off directories. By declaring the
default value of <slash> to be I we do not need to pass it to
future calls to ARCHIVE.

FIGURE 2
STARTUP FILE FOR HARD DISK BACKUP UTILITY

CLS

PROTECT "DHO:PC/MS-DOS BACKUPS" +a ;don't backup this file

ECHO " "

ECHO" BEGINNING BACKUP"

ECHO " "

EXECUTE DHO:ARCHIVES/ARCHIVE 0

ECHO" "

ECHO" BACKUP COMPLETE"
ECHO \\ "

DEL

DEL

DEL

DEL RAM:TEHP

CD DHO:

;0 is is <slash>

;all done

iclean up temporary files

iset default directory

DJC
om
pu
ter
s.c
z

FIGURE 3
ARCHIVE PROGRAM FOR HARD DISK BACKUP UTI LIN

.KEY path,slash

.DEF slash

FAILAT 30

CD "DH<path><slash>"

IF <slash> EQ !

IF NOT EXISTS "JH<path>"
ECHO "MA!UNG DIRECTORY J:i<pat:h>"
MD "JH<path>"

ENDIF

ENDIF

LIST > RAM:ARCHLIST NOHEAD FILES

EDIT> NIL: RAM:ABCHLIST WITH DHO:.L.RCHIVES!lIRCHIVEl TO RL.M:TEMP
EDIT> NIL: RAM:TEI'!P WITH DHC:ABCHIVES!ARCHIVE2 TO RAM:ARCHLIST

IF NOT WARN

EDIT> NIL: RAM:ARCHLIST WIT"! DHO:ARCHIVES/I'.RCHIV1':3 TO RAt'1:TEMP
EDIT> NIL: RAt"I:TEMP WITH DHO:ARCHIVES/ARCHlVE4 TO RL.M:ARCHCOPY

ECHO "COPY FILES FROM DH<path><slash>"
EXECUTE RAM:ARCHCOPY "<path>" <slash>

EDIT> NIL: RAM:ARCHLIST WITH DHO:ARCHlVES/ARCHIVES TO RAM:ARCHPROTECT

EXECUTE RAM:ARCHPROTECT

ENDIF
:directories

LIST > RAM:ARCHLIST NOHEAD DIRS
EDIT> NIL: RAM:ARCHLIST WITH DHO:ARCHIVES/ARCHIVE2 TO RAM:TEMP

IF ERROR
SKIP END

ENDIF

EDIT> NIL: RAM:TEMP ,nTH DHO :1'.RCHlVES/ARCHIVE6 TO RAM:.'\ ... R.CHLIST

EXECUTE "<pat!:.>" <slash>

DEL "DH<path><slash>ARCHDIRS"

LAB END

;path includes 0
;slash is : or /'

:DEFAULT IS

ienough to cllow for
;edit no matches arJ.d
;prot:ect faLLs

to new

;create target directory req'd

i list files

;del a.r files
;del garbage

ida only if files

iCOpy scrip:.
;adcis ".KEY

iexecute copy script

;protect

:8xecute protect script

; list dirs

:del garbage

;r.o dirs?

;then eCld

;adds ".KEY pat.h"

; e::-:ecu-::.e p.RCHlVE fer

leach directory

idel temp file

PREMIERE ISSUE 19

DJComputers.cz

(3) FAILAT 30

The returncode must be set to at least 30 to allow
execution of the program to continue if an error occurs in the
EDIT commands or the PROTECT. This can occur when EDIT
tries to find a match in the file listing (described below) and one
is not found, which in this program just means that all files in a
particular directory have not changed since the last backup.
And, when used for some older software such as Graphicraft,
the PROTECT fails and an error is generated. These programs
never have their archive bit set, and subsequently are backed
up every time you execute the backup program. This causes no
harm, and in both of these cases it is desireable to have the
program continue executing because these errors have no effect
on the proper operation of the program.

FIGURE 4
SUPPORT FILES FOR HARD DISK BACKUP UTILIN

ARCBIVEl

o IDF/-r/ ;N)

ARCHIVE2

OISB/ /;D;)

ARCHIVE3

OIB//COPY "DH<path><slash>/;A L//" TO "JH<path><slash>"/;N)

ARCHIVE4

I,DHO:ARCHlVES/ARCHlVEKEY,W

ARCHIVE5

o I B//PROTECT "/; A L/ /" +a/; N)

ARCHIVE6

o (B**EXECUTE DHO:ARCHIVES/ARCHlVEDIR "<path><slash>*;A L**"*;N)

ARCHIVEDIR

.KEY dir

EXECUTE D:IO:ARCHlVES/ARCHIVE "<dir>"

ARCHIVEKEY

.KE"::" pa':.h,slash

20 AC's TECH

(4) CD "DH<path><slash>"

This command changes execution to the new directOlY
that is to be backed up. The quote marks around the phrase
allow filenames and directOlY names with a space to be used
(unlike MS-DOS conventions). As discussed above, <path>
continues adding more levels of the path as each instance of
ARCHIVE is called. For example:

Ini tial call:
2nd call:
3rd call:

CD "DHO:"
CD "DHO:Spreadsheets/"
CD "DHO:Spreadsheets/1989

Budgets/"

This concept applies throughout the program recursion
wherever <path> and <slash> occur.

(5) IF <slash> EQ /

The next piece of code creates the target directory, if it
doesn't exist. However, we don't want to do that during the
very first call to ARCHIVE where <slash> is equal to : and we
are backing up files in DHO:. Therefore, we use the IF statement
to execute the next piece of code only if <slash> is equal to /
(not equal to :).

(6) IF NOT EXISTS "JH<path>"

We want to create the target directory if it does not exist.

(7) ECHO "MAKING DIRECTORY JH<path>"

Lets the user know that the target directory is being
made.

(8) MD "JH<path>"

Makes the target directory.

(9) ENDIF

End of the piece of code that makes the new target
directory if it doesn't exist.

(10) ENDIF

Ends the piece of code below the check for <slash>
equal to /.

(11) LIST > RAM;ARCHLIST NOHEAD FILES

All files in the current directory are listed. The file listing
is accomplished through the LIST command using only the
NOHEAD and FILES option. The NOHEAD option deletes the
header infonnation nonnally found in the listing using the LIST

DJC
om
pu
ter
s.c
z

command, and the FILES option lists only files, no directories.
The output of the LIST command is redirected into a file called
ARCHLIST (in RAM: for speed).

FIGURE 5
EXAMPLE OUTPUT LISTING FROM STEP (11)

TRANSFER

VirusX.info

Simulation

Simulation. info

BACKUP

MP

PC-XT

Preferences

Trashcan.info

Expansion.info

Disk.info

.info

Utilities.info

System. info

Spreadsheets. info

Word Processing. info

Preferences. info
Empty Folder.info

DIRECTORY. info

83 --rwed Saturday 10:23:07

894 -arwed 24-Nov-89 12:16:36

2372 -arwed 17-0ct-89 20:04:25

779 -arwed 17-0ct-89 20:05:38

369 -s-arwed Monday 18:58:47

3688 --rwed 30-Sep-89 16:26:45

26 -s-arwed 16-0ct-89 19:15:28

56628 -arwed 25-Mar-89 12:44:51

1166 -arwed Saturday 10:26:49

894 -arwed 30-Sep-89 18:14:47

599 -arwed 22-Nov-89 14:10:34

272 --rwed Today 17:58:41

894 -arwed 30-Sep-89 18:09:42

B94 -arwed 30-Sep-89 18:09:43

894 -arwed 30-Sep-89 18:09:58

894 -arwed 02-0ct-89 10:36:19

718 -arwed 30-Sep-89 18:15:09

2946 --rwed 17-0ct-89 20:06:13

1210 -arwed 04-0ct-89 15:48:51

(12) EDIT> NIL: RAM:ARCHLIST WITH
DHO : ARCHIVES/ARCHIVE 1 TO RAM: TEMP

This is where the first EDIT command is executed. The
redirection to NIL: keeps all EDIT messages from appearing on
the screen (reduces screen clutter and unnecessalY information).
The filelist in ARCHLIST is edited using the command stored in
ARCHIVEl, shown in Figure 4. An example ARCHLIST is shown
in Figure 5. We want to leave any line in the filelist that has the
protection bit "a" missing. We will key on the protection bits
field and assume that all files that we want to backup are
readable so that the protection bit "r" is set. Therefore, any
filelist line with "-1''' in the protection bit field deSignates a file
we want to back up, and all others we will assume are either
already backed up ("ar") or are unreadable ("a-"). There is one
glitch in this, in that a -r in the filename itself will also be
backed up, whether desired or not. This is a small price to pay
for the simplicity, and for most users this will probably not be a
problem.

The command "O(DF/-r/;N)" in ARCHIVE1:

(DF
I-rl

starts at the top of the file
deletes every line in ARCHLIST until
the string (-r) is found, leaves that line
ends the DF delete command

N moves down to the next line
) repeats the DF delete and next line sequence.

Notice the symbol/is used as the delimiter in the EDIT
commands. This continues until the end of the file is reached.
The resulting edited filelist is shown in Figure 6 and contains
the list of files that we need to back up, along vvith some
information that we don't care about. This edited filelist is stored
in RAt\1: (for speed) in a file called TEMP. EDIT does not allow
you to edit a file in this manner and just save the newly-edited
file under the same name; thus, the new filename TEMP.

FIGURE 6
OUTPUT LISTING FROM STEP (12)

TRANSFER

MP

.info

83 --rwed Saturday 10:23:07

3688 --rwed 30-Sep-89 16:26:45

272 --rwed Today 17:58:41

Empty Folder.info 2946 --rwed 17-0ct-89 20:06::3

(13) EDIT> NIL: RAM:TEMP WITH
DHO:ARCHIVES/ARCHIVE2 TO
RAM:ARCHLIST

This command is very similar to the one above. It edits
the edited filelist generated above by using ARCHIVE2 (Figure
4). The objective of this EDIT command is to clean up the
"garbage" left in our filelist to result in a simple list of files.

The command "O(SBI I;D;)" in ARCHlVE2:

o starts at the top of the file
(SB splits every line when it reaches
I / two spaces in the line

ends the SB split line command
D deletes the next lir.e, now the "ga::::-bage"

ends the D delete
repeats the SB aLd r; sequence.

This continues until the end of the file is re:tched. The
resulting edited filelist is shown in Figure 7 and contains just the
list of files that we need to back up. This edited filelist is stored
back in RAt\1:ARCHLIST.

FIGURE 7
OUTPUT LISTING FROM STEP (13)

TRANSFER

MP

.info

Empty Fo1der.info

PREMIERE ISSUE 21

DJComputers.cz

(14) IF NOT WARN

This statement causes the program to skip the next piece
of code, which copies and sets the archive bits of the files to be
backed up if a WARN returncode is returned by the previous
command. If the first edited filelist contains no files (i.e., none
of the files in the directOlY have changed since the last backup),
RAM:TEMP will have no entries. When the previous EDIT
command is called, an empty file TEMP will cause a WARN
returncode.

(15) EDIT> NIL: RAM:ARCHLIST WITH
DHO:ARCHIVES/ARCHIVE2 TO RAM:TEMP

This command is similar to the others above. It edits the
edited filelist generated above by using ARCHIVE3 (Figure 4).
The objective of this EDIT command is to add the COpy
command in front of each filename in our filelist to come up
with a script file to perform the actual backup.

The command "O(B//COPY "DH<path><slash>/;A L//" TO
"JH<path><slash>"/;N)" in ARCHlVE3:

o starts at the top of the file
(B search line and insert before the string
! / nothing ("he beginning of the line)
COPY the COPY and the phrase
"DH<path> source pathna.'1le
<slash> separation slash (or ":")

of phrase to insert at this point
ends the B search and insert before command

A search line and insert after
L begin search from the left until find
// nothing (the end of the line)
TO inserts the TO keyword and the phrase
"JH<path> destination pathname
<slash> the separation slash (or ":")

N
)

end of phrase to insert at this point
ends the A search and insert after command
moves down to the next line
repeats the B and A sequence.

This continues until the end of the file is reached. The
resulting edited COPY script file is shown in Figure 8. It
contains just the list of COpy commands to copy the files that
we need to back up from the source DH<path><slash> and to
the destination]H<path><slash>, as we desire. This edited
COpy script file is stored in RAM:ARCHTEMP because we still
have to add .KEY with <path> and <slash> to the script file for
it to work properly.

FIGURE 8
OUTPUT LISTING FROM STEP (15)

COpy "DH<path><slash>TRl\NSFER" TO "JH<path><slash>"

COPY "DH<path><slash>MP" TO "JH<path><slash>"

COPY "DH<path><slash>.info" TO "JH<path><slash>"

COPY "DH<path><slash>Empty Folder.info" TO
"JH<path><slash>"

22 AC's TECH

(16) EDIT> NIL: RAM:TEMP WITH
DHO:ARCHIVES/ARCHIVE4 TO
RAM:ARCHCOPY

This command takes care of the last item identified
above-it adds .KEY with the required parameters. It also edits
the initial script file generated above by using ARCHIVE4
(Figure 4).

The command "I,DHO:JI.RCHlVES/ARCHlVEKEY," in ARCHlVE4:

DHD:
inserts at the top of the file
the contents of file JI.RCHlVEKEY

The contents of the ARCHIVEKEY file is .KEY and the
parameters required for the script file, <path> and <slash>. The
W command in ARCHIVE4 completes the editing, and is
required when the I command uses a file for the inserted text.
The resulting complete COPY script file is shown in Figure 9
and is stored in RAM:ARCHCOPY.

FIGURE 9
OUTPUT LISTING FROM STEP (16)

. KEY path, slash

COPY "DH<path><slash>TRANSFER" TO "JH<path><slash>"

COPY \\DH<path><slash>MP" TO \\JH<?ath><slash>/f

COPY \'DH<path><slash>. info" TO "JH<path><s:ash>"

COPY "DH<path><slash>Empty Folder.info" TO "JH<path><slash>"

(17) ECHO "COPY FILES FROM
DH<path><slash>"

This command lets the user know which directory is
being backed up. With a little more work, you could just as
easily print out the name of each program being copied, but to
reduce screen clutter I chose to only display the directory.

(18) EXECUTE RAM:ARCHCOPY "<path>"
<slash>

This command executes the script file that we developed
above to do the copying for this palticular directoly. Notice that
the path variable (the complete pathname for this directory) is
passed to the script file with quotes to allow for spaces, and the
slash variable is also passed.

(19) EDIT> NIL: RAM:ARCHLIST WITH
DHO:ARCHIVES/ARCHIVE5 TO
RAM:ARCHPROTECT

This command edits the edited filelist generated several
steps above by using ARCHIVE5 (Figure 4). The objective of this
EDIT command is to add the PROTECT command in front of
each filename in our filelist to come up with a script file to set
the archive bit for each of the files that we backed up.

DJC
om
pu
ter
s.c
z

The command "OIEIIPROTECT "I;A LII" +a I;N)" in
ARCHIVES:

(B

II
PROTECT

starts at the top of the file
search line and insert before the string
nothing (the beginning of the line)
inserts the PROTECT command and the
beginning quote to allow spaces in filename
end of phrase to insert at this point
ends the B search and insert before

A search line and insert after
L begin search from the left until find
II nothing Iche end of the line)

inserts ending quote for filenaIne and a space
+a and :he parCIT.eter to set the archive bit
I end of to insert at this point

ends the A search and insert after cOITlIT:and
N moves down to the next line
) repeats tje B and A sequence.

This continues until the end of the file is reached. The
resulting edited PROTECT script file is shown in Figure 10. It
contains just the list of PROTECT commands to set the archive
bit for each of the files that we backed up. This edited COPY
script file is stored in RAM:ARCHPROTECT.

FIGURE 10
OUTPUT LISTING FROM STEP (19)

PROTECT "TRANSFER" +a

PROTECT "MP" +a

PROTECT ".info" +a

PROTECT "Empty Folder.info" +a

(20) EXECUTE RAM:ARCHPROTECT

This command executes the script file that we developed
above to set the archive bit of the backed up files using the
PROTECT command. Notice that we do not have to pass either
the path variable (the complete pathname for this directory) or
the slash variable to the script file. That is because we are
setting the archive bit for files in our current directory, rather
than performing actions across drives as above.

(21) ENDIF

This ends the section of the program that backs up the
files in our CUITent directory. Next, we will go into each of the
subdirectories in the current directory and back them up
separately.

(22) LIST> RAM:ARCHLIST NOHEAD DIRS

All subdirectories in the current directory are listed. The
subdirectory listing is accomplished through the LIST command
using only the NOHEAD and DIRS option. The NOHEAD option
deletes the header information normally found in the listing

using the LIST command, and the DIRS option lists only
directories, no files. The output of the LIST command is
redirected into RAM:ARCHLIST. An example directory list is
shown in Figure 11.

FIGURE 11
OUTPUT LISTING FROM STEP (22)

ARCH:VES Dir -r'W'ed Eonday

System Dir -rv-led 04-0ct-89 :5:04:41

util':"ties Dir -r',;ed 20:33:22

Spreadsheets Dir -cded l".londay 19:05:05

?r-ocessing Dir -r..:ed Monday 19:22:12

T Dir -rwed HO:1day 20:34:58

Empty Folder Dir -rwed 15-Jun-89 19:18:55

Fonts Dir -rwed Monday 19:18:14

ARP Dir -rwed 27-May-89 23:45:45

Empty Dir -rwed 30-Sep-89 18:02:15

Trashcan Dir -rwed 30-Sep-89 17:02:37

C Dir -rwed Monday 20:31:11

L Dir -rwed 30-Sep-89 16:11:41

Devs Dir -rwed Monday 19:19:20

S Dir -rwed Mon.day 20:34:58

Libs Dir -rwed 16-Nov-89 21:03:59

Expansion Dir -rwed. 21:01:00

Accessories Dir -rwed 31-Mar-29 12:25:48

(23) EDIT> NIL: RAM:ARCHLIST WITH
DHO :ARCHlVES/ARCHIVE2 TO RAM:TE.MP

This is where the first EDIT command is executed for the
list of subdirectories in the current directory. The command
edits the directory list generated above by using ARCHIVE2
(Figure 4). This step is the same as step (13) above and simply
deletes the "garbage" at the end of each line in the listing, as
shown in Figure 12.

FIGURE 12
OUTPUT LISTING FROM STEP (23)

.lIRCHlVES

System

Utilities

Spreadsheets

Word Processing

T

Empty :clder

Fonts

Empty

Trashcan
C
L

Devs
S
Libs
Expansion

Accessories

PREMIERE ISSUE 23

DJComputers.cz

(24) IF ERROR

This statement causes the program to skip to the end of
the program if an ERROR returncode is returned by the previous
command. If the edited directory list contains no directories
(Le., there are no subdirectories in the current directory),
RAM:ARCHLIST will have no entries. When the previous EDIT
command is called, an empty file ARCHLIST will cause an
ERROR returncode.

FIGURE 13
OUTPUT LISTING FROM STEP (27)

EXECUTE DHO :Ac"-CHIVES/l'.RCHlVEDIR "<path><slash>ARC,,:VES"

EXECUTE DHO:ARCHIVES/ARCHlVEDIR "<path><slash>Systern"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Utilities"

EXECUTE DHO:ARCHIVES/ARCHlVEDIR "<path><slash>Spreadsheets"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Word Processing"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>T"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Ernpty Folder"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Fonts"

EXECUTE DHO:ARCHIVES/ARCHlVEDIR "<path><slash>ARP"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Empty"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Trashcan"

EXECUTE DHO: .'lRCHlVES/ARCHlVEDIR "<path><slash>C"

EXECUTE DHO:ARCHlVES/ARCHIVEDIR "<path><slash>L"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Devs"

EXECUTE DHO :ARCHlVES/Ac"CHlVEDIR "<path><slash>S"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Libs"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Expansion"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Accessories"

(25) SKIP END

This statement skips program execution to the END label
at the end of the program-we are done backing up the current
directory. All files have been backed up and there are no
subdirectories to back up.

(26) ENDIF

This is the end of the IF statement for checking on
subdirectories.

(27) EDIT> NIL: RAM:TEMP WITH
DHO:ARCHlVES/ARCHIVE6 TO
RAM:ARCHLIST

This command edits the edited directory list generated
above by using ARCHNE6 (Figure 4). The objective of this EDIT
command is to add a command in front of each directory name
in our directory list to develop a script file to execute this very
same ARCHNE program we are describing. This is the recursive
nature of the program discussed previously.

24 AC's TECH

The command "0 (B**EXECUTE DHO:ARCHlVES/ARCHlVEDIR
"<path><slash>*;A L**"*;N)" in ARCHlVE6:

o starts at the top of the file
(B search line and insert before the string

nothing (the beginning of the line)
EXECUTE inserts the EXECUTE command and the
DHO: ... filename to be executed

beginning quote to allow spaces in pathname
<path> pathname of the current directcry
<slash> I =or separating directory and filename

end delimiter insert phrase

A
L

N
)

ends the B search and insert before commar,d
search line and insert after
begin search the left find
nothing end of the
inserts the ending quote for the
end 0: phrase to ir..sert at this point
ends A search and insert after command
moves down to the next line
repeats the B and A sequence.

Notice that the delimiters we use with this EDIT com­
mand have changed from / to • to allow / characters to be used
in the inserted phrase. This edit continues on each line of the
file until the end of the file is reached. The reSUlting edited
directory list is shown in Figure 13. It contains the list of
EXECUTE commands to execute a script file named
ARCHNEDIR (shown in Figure 4) for each subdirectory in the
current directory. This edited EXECUTE script file is stored in
RAM:ARCHTEMP because we still have to add .KEY with <path>
and <slash> to the script file for it to work properly.

FIGURE 14
OUTPUT LISTING FROM STEP (28)

.KEY path,slash

EXECUTE DHO :ARCHlVES/ARCHlVEDIR "<patr,><slash>ARCHlVES"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>System"

EXECUTE DHO :.'lRCHlVES/ARCHlVEDIR "<path><slash>Utili ties"

EXECUTE DHO:ARCHIVES/ARCHlVEDIR "<path><slash>Spreadsheets"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Word Processing"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>T"

EXECUTE DHO:ARCHIVES/ARCHlVEDIR "<path><slash>Ernpty Folder"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Fonts"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>ARP"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Ernpty"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Trashcan"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>C"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>L"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Devs"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>S"

EXECUTE DHO:ARCHlVESlp.RCHlVEDIR "<path><slash>Libs"

EXECUTE DHO:ARCHIVES/A!<CHlVEDIR "<path><slash>Expansion"

EXECUTE DHO:ARCHlVES/ARCHlVEDIR "<path><slash>Accessories"

DJC
om
pu
ter
s.c
z

(28) EDIT> NIL: RAM:ARCHLIST WITH
DHO:ARCHIVES/ARCHIVE4 TO ARCHDIRS

This command takes care of the last item identified
above-it adds .KEY with the required parameters, and is the
same as step (16) above. The resulting complete EXECUTE
sClipt file is shown in Figure 14 and is stored in ARCHDIRS.
Notice that this file is not stored in RAM:, but in the current
directory. Thus, as we go down through the subdirectories,
making an ARCHDIRS for each one of them, we can keep them
separate until we complete the backup.

(29) EXECUTE "DH<path><slash>ARCHDIRS"
"<path>" <slash>

This command executes the script file that we developed
above to back up each subdirectory in this particular directory.
Notice that the path variable (the complete pathname for this
directOlY) is passed to the script file with quotes to allow for
spaces, and the slash variable is also passed. Looking at the file
ARCHDIRS that we created (Figure 14), notice that for each
directOlY, we execute another script file named ARCHIVEDIR
(see Figure 4) in the ARCHIVES directory. While this seems like
an unnecessarily complex nesting, it is required to keep the
<path>, <slash> and <dir> parameters separate. Each EXECUTE
command in the developed script file/directory list ARCHDIRS
passes a parameter to ARCHIVES/ ARCHIVEDIR that serves as
<dir>. That parameter consists of the original <path> and
<slash> parameters appended to the subdirectOlY name with
quotes around the entire parameter to allow for spaces in the
pathname.

For example, suppose we are backing up a directory
named "Spreadsheets" which has a subdirectory named "1989
Taxes". The <path> parameter is "DHO:Spreadsheets" the
<slash> parameter is /. The parameter passed as <dir> would be
"DHO:Spreadsheets/1989 Taxes". Now, this parameter is used as
the new <path> parameter for the newly-called instance of
ARCHIVES/ARCHIVE done by ARCHIVES/ ARCHlVEDIR. The
new <slash> parameter is specified by default in line (2) of
ARCHIVE to be /, which is what we want. The process starts all
over for this new directory, which is the technique of recursion.

(30) DEL "DH<path><slash>ARCHDIRS"

When the whole EXECUTE script in ARCHDIRS of the
current directory is completed, all of the lower-level
subdirectories in the current directOlY have been completely
backed up. Therefore, we no longer need the working file
ARCHDIRS stored in our current directOlY, and can delete it
with this command.

(31) LAB END

This completes the backup of the current directoly-all
files in the directOlY were backed up in step (18) and each of
the subdirectories were backed up in step (29), through the use
of recursive calls to this same program.

Conclusion
This program is rather simple in concept, as it:

(1) backs up all of the files in a directory,
(2) calls the program again for each subdirectory to backup

its own files,
(3) calls the program again for each of its subdirectories to

backup those subdirectory's files,
(4) calls the program again, etc.

You get the picture: it's kind of like placing two mirrors
facing each other and looking at the never-ending reflections.
The difference in this case is that when the last subdirectory is
backed up, the last instance of the program ends, ending the
next-to-last instance of tbe program, and so on, until tbe first
instance of tbe program that started the whole process ends.

lZl

About the Author

Dr. Pardue is presently an Assistant
Professor of Computer Engineering at Old
Dominion University, at Norfolk, Virginia. He
has been using an Amiga since he bought an
Amiga 1000 in 1985, and now uses an Amiga
2000 equipped with a 40 MB A.111iga hard disk
and an A2088 Bridgeboard with a 32 MB IBM
hard disk. You can contact Dr. Pardue c/o
AC's TECH.

PREMIERE ISSUE 25

DJComputers.cz

-'\' ..

BUILDING THE VIDCELL
256 GRAYSCALE DIGITIZER

(INCLUDES ALL

DJC
om
pu
ter
s.c
z

Building the Vidcell & Using the Vidcell Software

BUILDING THE VIDCELL

OVERVIEW
One of the first things that people appreciate about the

Amiga is its great video capabilities. The new trend in computer
video is the digitizing of 24-bit color (8 bits each for red, green,
and blue) images. Digitizing is useful for a variety of things,
such as placing pictures in your reports, creating a database of
images, or placing pictures in your programs.

Digitizing is usually accomplished either by using a
color camera, or a black-and-white camera with color filters.
This gives the user images of more than 16 million (2 to the
24th power) colors. The most popular video digitizer presently
available for the Amiga is a 7-bit (21-bit color) digitizer; it is
only capable of displaying 2.1 million colors, however. Color
scanners can be used to achieve the new 24-bit images, but
these expensive peripherals do not fit into everyone's budget.

This article will show you how to build an 8-bit video
digitizer for less than $80 (with a professional circuit board and
software), capable of twice as many grayscales as the most
popular commercial digitizer now available for the Amiga. If
you can solder or know someone who does, you should be
able to complete this project without any difficulty.

FROM CAMERA TO COMPUTER
A camera convens an image's light intensity into an

analog signal. Before an image can be used by a computer, the
analog signal must itself be converted into digital values that
represent the analog intensity. This process is known as AID
conversion. In this case, the video digitizer performs this
function. The analog signal from a camera is fed into the video
digitizer for conversion. The converted values are then fed to
the Amiga computer via the parallel port. Once the video data is
in the computer's memory, it can then be manipulated in many
different ways, and also displayed. The information can then be
saved as an IFF picture file for future use with any of the image
software packages.

THEORY OF OPERATION
Please refer to the schematic accompanying this article.

The video signal from the RS-170 video source (camera, VCR,
etc.) is fed to the input of Ul. Ul filters out the horizontal and
vertical sync signals from the video source. These signals are
used to synchronize both the circuitry and the computer to the
incoming video infolmation. The computer waits for a vertical

sync via pin 10 of the parallel port. Once the signal is received,
we know that the camera is at the top of the picture and it is
time to stan converting the information. Video information is
too fast for the computer to keep up with through the parallel
port, so this digitizer uses a left-ta-right, slow-scan process. The
information is collected in vertical columns from left to right at a
rate of 1 column every 1/60th of a second. Since there are 640
columns of video on the Amiga, it takes 640 times 1/60th of a
second, or 10.6 seconds, to digitize a complete image.

The timing for the left-to-right scan is controlled by the
charging of C4. The voltage across C4 is initially brought to zero
volts before digitizing is started. This grounding action is
accomplished by using the analog switch U4a, controlled by pin
12 of the parallel port. As C4 is allowed to charge, its voltage
determines the delay value of the one-shot U2. The horizontal
sync signals from Ul are fed to the trigger input of the one-shot
U2. This trigger signal occurs once at the beginning of each
horizontal line. The output of the one-shot U2 is delayed by the
voltage across C4 and fed to the sample-and-hold section of the
circuit (U3, U4, and CS). CS of the sample-and-hold circuit now
holds the analog value of one individual pixel. This analog
value is then filtered and fed to the input of the AID converter
US. US converts this value to a digital binary number, which is
then made available to the computer via pins 2 through 9 of the
parallel port. This process is continued until all 640 vertical
columns are collected. Once all the information is in the
computer's memory, the binary values for each pixel may be
manipulated and displayed. For example, if you want to
increase the brightness of the picture, you can add a constant
value to each pixel value and display it.

BUILDING THE UNIT
The circuit can be built using the wire-wrapping

technique, but I strongly recommend using a printed circuit
board, for several reasons. First and most important, the unit
works better with a printed circuit board due to RF noise
reduction. It is also much easier to put it together without
making mistakes, since the circuit board has silk-screened labels
for all the parts. USing a printed circuit board also makes the
unit much more compact and professional looking. The parts
may be ordered from DIGI-KEY, or I can supply the PaJts with
the circuit board (see the complete parts list accompanying this
article). I recommend using high-quality parts and sockets for

PREMIERE ISSUE 27

DJComputers.cz

the circuit. This will maximize the performance of your digitizer.
In addition to the parts and circuit board, you will also

need a small-tip soldering iron and some quality solder. To aid
in the assembly of the components, use a ruler to mark off a
distance of .3 inches on a piece of paper. Then, use this as a
guide for bending the leads of the components to the right
width.

Start by putting the resistors in the board first, followed
by the capacitors (smallest first, largest last). Be sure you
observe the polarity of Cl, C4, C8, and C9. If you ordered the
exact parts listed, then two of your lC sockets have built-in mter
capacitors. The 14 pin is for U4 and the 20 pin is for U5. As you
insert the sockets in the board, you may find that bending the
corner pins a little helps to keep the socket in place for
soldering. R3 and R8 are both 10k potentiometers. After
soldering potentiometers R3 and R8, adjust them both to the
center position. R3 controls fine width adjustment and R8
controls image contrast. Once the circuit is operational, these
can be adjusted to make the digitizer work better with each
specific camera.

C9, CI0, and Cll are not shown in the schematic. CI0
and Cll are both .1uF filter caps and C9 is a 220uF electrolytic
filter cap, as shown in the parts list. Make sure all leads are cut

Vcc

J1

RS-170 Cl
U1

Input .047

as short as possible after soldering. CNI is the DB25 connector
that connects the unit to the parallel port on the Amiga. You
can use a right-angle connector or a straight connector (if you
order the parts from me, please specify which type of connector
you would prefer for CNl). The next and final step in construc­
tion is to connect the RCA jack. This is done by soldering some
wire to Jl. The positive or inner connection on the jack should
be soldered to the hole closest to the bottom of the board, or to
the right if you are looking at the J1 label right side up. Clean
off any excess flux with a non-organic flux remover (be sure to
read the warning label on this stuff). Insert all ICs in their
sockets, making sure they are oriented correctly. Your new
digitizer should now be ready for action.

MAKING IT WORK
After double checking all parts and connections, turn

the Amiga off and plug the digitizer into the parallel port. Turn
the power on and boot up the software called VidCellv1.0, if
you have at least 1 meg of memoly. If you have 5l2K then use
the VCl.O software. Next, connect a video source such as a
camera or a VCR to the input jack J1. The best results can be
obtained with a high-resolution, black-and-white camera such as

r-__ V_E_R_T_.S_Y_N_C_. ____ c=>10

I
8

ii 3

U4B

R1
66.1n

__ CS l 39P!

28 AC's TECH

1
4

v
Vee

R3 U2

'" 6

8--' 16

NOTE:
It is Critical that U2 is
a High Speed 7555

U3

32.

Vee U4A

RS
10kO

Vee

R4
499kO

R6 R7 C8

RS
10kO

Vee

START
12

Parallel Port:
Pin 14 - Vee
Pin 25 - Ground

Vee

us
20

1 STROBE

8

I --,---- 2

3

10 g •
11 0(5 5 DATA
13 14 6

15 c=> 7
12 10k"" 1 OkO .68"!

>-<O-----110J-l'r-----------'W,ru---.---------"WIr-..-------j'"I-- ___ ---1
16 8
17

U4
4066

C6 r .001Ji!
C7

I·oo47Ji!
! I

I VIDCELL - 256 Gray Scale Digitizer I
I Circuit Design: Todd Elliott

------- ------

DJC
om
pu
ter
s.c
z

the Panasonic WV1410. Since the digitizer is not real time, the
video source must remain stable for about 10 seconds. Click on
the GrabFrame gadget to start digitizing if you are using
VidCellvl.O, or the M-key if you are using VCl.O. The screen
will go blank. After a short pause, the power light should start
flashing rapidly. Each flash represents a vertical sync signal.
After the screen comes back, the title bar will display the current
phase of processing before display. After a few seconds, you
should see an image appear on the screen. You may have to
adjust the lighting and focus several times before getting it right.
Once you are happy with the display, you may make some fine
adjustments on the brightness and contrast with the software
before saving your image as an IFF file. You will find that very
fine adjustments are possible with 256 grayscales in memory.
Documentation and the assembly language source code for all

PARTS LIST

Qty Part Reference Digi-key Part

1 U1 LM1881N
1 U2 LMC555CN
1 U3 LM324N
1 U4 CD4066BCN
1 U5 KA00820BCN
1 R1 68.1X
1 R2 681KX
2 R3,R8 QOG14
1 R4 499KX
3 R5,R6,R7 10.0KX
1 C1 P2099
1 C2 P3104
1 C3 P3103
1 C4 P2028
1 C5 P4019
1 C6 P3102
1 C7 P3472
1 C8 P2072
1 C9 P6002
2 C10,C11 P4311
1 CN1 325M-NO

2ND OPTION
1 CN1 525M-ND

2 S1,S2 C7208
1 S3 C7214
1 S4 ED2101
1 S5 E02104

MiSe
1 J1 RADIO SHACK #
1 RADIO SHACK #

the software's features can be found on the disk with the
software.

CONSTRUCTION COMPLETE!
A lot of time and effort has gone into making this

project a useful, profeSSional-quality project for Amiga users and
programmers. Hopefully, having the source code available will
inspire you to find some new applications and improve it even
more.

Write me and tell me what you think of the project
and how you think the software could be improved in the
future. Also write me if you have any problems with it. and I
will try to help the best I can.

Desc.

SYNC SEPARATOR
CMOS 555 TIMER
QUAD OPAMP
QUAD SWITCH
8 BIT AID CONVERTER
68.1 OHM RES
681K OHM RES
10K OHM TRIM POT
499K OHM RES
10K OHM RES
.047 UF POLYPROP CAP
.1 UF POL YPROP CAP
.01 UF POL YPROP CAP
22 UF T ANT CAP
39 PF DISC CAP
.001 UF POLYPROP CAP
.0047 UF POL YPROP CAP
.68 UF TANT CAP
220 UF RAD ELEC CAP
.1 UF DISC CAP
D825 MALE RIGHT-ANGLE

D825 MALE STRAIGHT

MACHINE 8 PIN SOCKET
MACHINE 14 PIN SOCKET
14 PIN SOCKET W/CAP
20 PIN SOCKET W/CAP

274-852 RCA JACK
270-257 CASE (OPTIONAL)

PREMIERE ISSUE 29

DJComputers.cz

USING VIDCELL Vl.O SOFTWARE
WITH THE VIDCELL DIGITIZER

FROM THE BEGINNING
The idea for this project first came to me more than a

year-and-a-half ago; it has basically taken that long to get it
ready to go. I started by just drawing up a schematic , bread­
boarding and discovering the circuit wouldn 't work! This went
on almost every night (sometimes until 4 in the morning) for
about a month , until it finally did work. It didn't look great at
first, either, but within a couple of days I had it looking pretty
good, for a breadboarded circuit. The joker.pic on the disk was
one of the first digitized pictures I saved.

Once the bugs had been worked out of the circuit I
purchased Pro-Board from Prolific Inc. and designed the
board in a weekend. It worked, but I had to make changes . The
software still had a ways to go, too. I needed a file requester. I
searched through the public domain until I found R.J. Mical's
file requester (thanks, R.J.!). Once I felt that the software had
reached a point that it could be released, I wrote this article,
researched the best components to use, and maintained a social
life again . It has been much fun, and I hope a lot of Amiga
people really enjoy having a video digitizer with a schematic,
theOlY of operation, and source code (yeah!) . I also hope a few
of you out there will eventually do things to make it even
better. If you do make some modifications or have ideas for
same, please send them to me.

30 AC's TECH

GENERAL INFORMATION

Lighting
I've found that digitizing something isn't as easy as you

might think. Lighting is a velY difficult thing to get right. Natural
sunlight provides the best results, but not everyone wants their
computer outdoors! Generally, fluorescent light is very good for
luminance , but it doesn't bring out the green colors velY well. I
have my best luck if I shut off all the lights in a room except for
a flourescent light and an incandescent light illuminating the
image to be digitized. Watch for glare and learn to use the
PSEUDO COLOR option on the color menu (see operation
instructions below) . Once you get the display looking pretty
good (good contrast), make some fine adjustments using the
software gadgets before saving your image. I think you'll find
that you can make very subtle changes when you have 256
grayscales to work with in memory.

LIB Files: (important!!)
There is a file called requester.lib that must be in the

LIBS directory of the system disk for the vidcellv1 program to
work.

Raw File Format: (for programmers' information)
The RAW file format contains a byte for each pixel of the

image. The information is stored in vertical columns from top to
bottom, left to right. So, if the image size is 640 x 200, then
there are 640 times 200 byte s, or 128,000 bytes of raw informa­
tion. The first byte contains the brightness infOimation for the
upper-left-hand corner pixel , the second bY1:e contains the info
for the pixel directly below that, etc ., and the 201st byte would
contain the information for the pixel directly to the right of the
first pixel, the 202nd byte would be the pixel below that, etc. I
hope this makes sense.

Memory
If you only have 512K, use the software called VCv1 in

the VC directory. This software will take over the machine, but
it does allow you to digitize in all the modes. The brightness
keys do not work yet on this version of the software. The save
option saves an IFF file called "test.pic " in the current directory,
and exits .

DJC
om
pu
ter
s.c
z

If you have 1 meg or more, then use the software called
Vidcellvl. This is multitasking software that only takes over the
machine when it is accepting information from the digitizer. It
has many features that VCvl doesn't have. I strongly recommend
having at least 1 meg of memory for digitizing, and you really
need more than 1 meg for 640 x 400 images.

USING THE VIDCELL SOFTWARE
The software was designed such that your display is

placed in the background with a control panel in front of, but
not entirely covering, the display. The control panel can be
toggled out of the way by double clicking the right button. The
menu options are located on the menu strip of the control panel.

PROJECT MENU

LOAD
This allows you to load a previously saved RAW file and
adjust it before saving it as an IFF file. The RAW file
fOlmat contains the 256 grayscale information, while the
IFF does not.

SAVE
RA W- saves the current raw information since the last
GrabFrame was activated.
IFF- saves the current display that you are viewing as an
IFF image that can be used in other software packages,
such as DeluxePaint and PIXmate.

QUIT
This exits the program, obviously.

MODES MENU

COLOR
RED - shows the display in shades of red (for use with
color filters).
GREEN - shows the display in shades of green.
BLUE - shows the display in shades of blue.
MONOCHROME - shows the display in shades of gray.
PSEUDO COLOR - shows the display in order of intensity.
This helps to determine problems with the lighting, such
as glare and shadows in certain areas. The order from
dark to light is: blues, reds, greens, yellows, white.

SCREEN SIZE
320 x 200 - sets the display mode to 320 x 200 pixels
(aspect ratio not right).
320 x 400 - sets the display mode to 320 x 400 pixels
(aspect ratio not right).
640 x 200 - sets the display mode to 640 x 200 pixels
(default).
640 x 400 - sets the display mode to 640 x 400 pixels
(requires more than 1 meg to be reliable).

HAM-ET;
The HAM-E offers every Amiga user L
two new graphics modes. It's the 0
most compatible, least expensive, R
highest performance way to get high B
quality, 24 bit graphics images on the H D U
computer and monitor system you A C R
already own. Compare these features M T S before you buy a graphics expander: E V T
Sharp RGB output standard X X
Standard IFF viewer compatible X X
Overlays Amiga screens X X X
Underlays Amiga screens X
Drags over/under Amiga screens X
Blit-compatible (brushes, BOBs) X
Free paint and rendering software X X X
Fully ARexx compatible X
Free software upgrades forever X
Composite compatible/upgradable X X X
SVHS compatible/upgradable X X
PAL machine compatible X X
Paint loads GIF pixel-for-pixel X
Works w fall std. Amiga monitors X X
Supports "Color Cycling","Glow" X
Uses only your RGB port X
Brush ANIM compatible X
Single Frame ANIM compatible X X X
Genlock capability standard X X
Built-in composite digitizer X
Image as backdrop playfield X
Unlimited real time updates X X
RGB, HSV, HSL, CMYpalettes X
Uses DigiView'" 4.0 directly X
Full overscan output X X X
Hires (768) 24 bit RGB upgradable X
Public-access support BBS X X
Works w/AmigaVision, CanDo ... X X
Double-shielded cables X
Free UPS ground Shipping X
UL listed power supply (Safe!) X X
Toll-free telephone sales line X
Paint, render 'C' source code free X
FCC Class B approved (RF-quiet!) X
Already available (November) X
True 24 bit output (3 8-bit DACs) X X
Up to 512, 24 bit color registers X
Lowest retail orice - ($299.95) X
Black Belt Systems, 398 Johnson Road,
Glasgow, MT, 59230. Sales:(800) TK-AMIGA;
Tech Support: (406) 367-5509; International
Sales: (406) 367-5513; BBS: (406) 367-ABBS;
Fax: (406) 367-AFAX; CIS PPN: 76004,1771;
BIX UID: "blackbelt"; Questions? Ask us!

DCTV" DiPaI c-lano; DiaiY"_· NewTet; HAM-E· Bloct BcltSyIlellll; AmipY"lIion· CanlllOCl<n
IIuIiIou Mochina; ConOO·l IIIOnic.; COOB • M.U.or, AhD· Bnt H ; GIF·

Circle 118 on Reader Service card.

DJComputers.cz

PLANES
Unfortunately, this is not available in this version.

GrayScale
This option sets the display mode to shades of gray.

BlackandWhite
This option sets the display mode to B&W for use with

desktop publishing. It is used in conjunction with the threshold
gadget (T) to set the lightness/darkness.

CONTROL PANEL OPTIONS
I - This gadget is the intensity gadget. It allows you to

change the brightness of the picture. To use it, just set the
percentage where you want it and select the REM.!\P gadget.
You will see the current phase of processing in the menu strip
before it actually displays the changes.

C - This gadget is operated the same as the I-Gadget, but
it controls the contrast of the image.

T - This gadget is used in conjunction with the Black and
White mode, selected from the menu. It allows you to change
the light/dark features. It works velY well for creating images to

KIT INCLUDES

CIRCUIT BOARD

ALL PARTS MINUS CASE

SOFIW ARE ON 3.5" DISK

RE-PRINT 01' ORIGINAL ARTICI.E

Please Send Check or Money Order for $79.95

0: OT OCJrICCS

P.O BOX 2098

Pasco, Wa. 99301

FREE

SHIPPING

be used with desktop publishing.
GmbFrame - This gadget is what actually stans the

digitizing process. It takes over the computer temporarily and
blanks the screen. When the screen comes back, you see the
current phase of processing before the actual display is updated.

Reset - This gadget resets the I, C, T gadgets. It opens the
WorkBench (if it was opened when the program was stalted). It

sets the display mode to 640 x 200 with monochrome.
Negative - This gadget creates an exact negative of the

current display. It doesn't affect the RAW information.
ClearScreen - This gadget clears the display. It doesn't

affect the RAW information.
Smoothing - This gadget (when illuminated) uses an

averaging routine on the data to smooth out rough edges. It
gives the effect of blurring the image.

Dithering
Not available in this version.

Screen Position
Not available in this version.

I guess that about covers the softvlare for now. If you
have suggestions or questions, please feel free to write.

VIacell
VIDEO DIGITIZER KI1'

256 GRAY SCALE

FEATURES:

INTUITION/CONTROL PANEl. INTERFACE

SOURCE CODE (ASSEMBLY)

SCllEMA'I1Crn IEORY or OPERATION

640 X 400 RESOLUllON

ACCEPTS STANDARD VIDEO SIGNAL

Circle 109 on Reader Service card.

32 AC's TECH

DJC
om
pu
ter
s.c
z

Technically Speaking,
It's The First.

Now That You Know
It's Also The Best,

Don't Just Sit There­
SUBSCRIBE!

\

Charter Subscription Offer -
4 Big Issues - Just $39.95

(limited time only)
Use the convenient sub card here

or call 1-800-345-3360

Next issue of AC'S TECH available April 1991.

DJComputers.cz

An Introduction to
Interprocess

Communication with ARexx

by Dan Sugalskl

One of the more useful, and least understood, capabili­
ties of ARexx is its ability to communicate with other programs
running simultaneously. Unfortunately, the full capabilities of
the language are almost never used. Palt of the problem is the
ARexx manual is set up as a reference work rather than a
tutorial, and part of the problem is a lack of good examples.
This article will provide you with both tutorial explanations and
some clear examples.

Almost everyone who uses the language is familiar with
some of the communications facilities provided in ARexx. The
main selling point of the language is its ability to integrate with
a variety of programs and provide a standard macro interface.
DOing this requires ARexx to talk to programs, and vice versa.
Unfortunately, this communication is almost all one way.

Surely you are familiar with the way ARexx is most
commonly used. You write a macro for your communications
program or text editor that does something useful. Whenever
that macro gets "fired up" it gets passed some parameters, does
some processing, and then fires off a series of commands to the
host that called it. While this is certainly handy, it is also
limiting. Once the macro begins running, the only information it
ever gets back from the host program is an occasional status
code.

This is unfortunate, because not only can ARexx send
commands to other programs-it can also receive them. Two­
way communication opens up a whole new world of possible
programs. In the old way of doing things, ARexx programs were
mostly stuck dealing with only one host. Sure, ARexx has
always been able to talk to more than one host, but so what?
Do you want to integrate your text editor and communications
program so you can use it (instead of the clunky message editor
on BIX or your favorite BBS), but think it's impossible? And
how about using a paint program to edit bitmaps interactively
for your DTP package?

Having the ability to send and receive information makes
the impossible possible. There are a number of programs that
are only marginally useful with the old one-way techniques, and
a few programs that are almost completely useless. The
question is, how is it done?

All of ARexx's communications functions are built upon
the message-passing system that is the heart of the Amiga's
operating system. To use ARexx effectively requires at least a

34 AC's TeCH

certain amount of familiarity with these functions, so hold on for
a whirlwind tour of what is inside of your Amiga.

All the information exchanged between programs and
the Amiga operating system is done by using messages and
message ports. An analogy would be to think of them as letters
and mailboxes. With a letter, you write it, put your return
address and the address of the receiver on it, and entrust it to
the post office. Things work Similarly with messages. A program
creates a message, puts its return address on it, and gives it to
the message system, along with the address of the message port
it is supposed to go to. To help simplify things, all message
ports have a name that the system keeps track of. So, rather
than having to try to figure out where a message port is in
memory, your program can ask the system for the location of
the message port with the name "Fred".

There are a few differences, of course, between mail and
Amiga messages. Unlike mail boxes, a program may add and
remove message ports from the system. Also, all messages are
taken out of message ports in the order they were received.
Most importantly, all messages must be returned to the program
that sent it. Continuing our analogy, it is kind of like only
borrowing your mail, rather than keeping it.

To help manage messages and message ports, the OS
provides a number of useful capabilities. The most impOltant is
the ability to put your program to sleep until a message arrives
at one of its message ports. The only alternative to doing this is
constantly checking your message ports for new messages,
something that is wasteful of precious CPU time that can be
better used by another program.

Now that we have had a quick overview of the underly­
ing message system ARexx uses, let's turn to the details of how
it is used. The Simplest of the functions are the two used in
nearly all ARexx programs: the ADDRESS command and the
"Host Commands".

The ADDRESS command is the most straightforward. It

tells ARexx the case-sensitive name of a message port. When­
ever your program needs to send out a message, it goes to the
port named by the last ADDRESS command executed. Note that
ARexx doesn't check to see if the port exists until it has to send
a message out. In addition, Amiga message port names are case
sensitive; that is, ARexx upper-cases all text that isn't enclosed
in quotes. This means your program may read 'address Fred',
but when ARexx actually executes the line it sees 'ADDRESS
FRED', two entirely different things.

DJC
om
pu
ter
s.c
z

A "Host Command" is pretty much anything ARexx
doesn't understand. When the ARexx interpreter is lUnning your
program and comes across a line that isn't in the ARexx
language, it takes the line, substitutes the value of any variable
for the variable itself, packages it up in a special ARexx
message, and fires it off to the port your program last
ADDRESSed. ARexx then puts your program to sleep, until that
message gets a reply.

That last detail is important, and something that must
always be kept in mind. If the message your program sends out
never gets a reply, your ARex..x program will never wake up.
This also means your program can't send messages to itself. A
message will sit at your program's port until it is received and
replied to, but your program can't get the message because it is
asleep waiting for it to reply to itself. I'm sure you can see the
problem involved here.

Besides being able to send messages, ARexx programs
also have the capability to receive them. There are a number of
functions available to manage messages and message ports in
the RexxSupport libralY that comes with the ARexx interpreter.
There is a brief reference section covering this library in
Appendix D of the manual that comes with the language, but
we will be going over the functions of interest in more detail.
One thing to keep in mind when reading the manual is that
ARexx refers to messages as "packets", and the data in the
messages as "arguments". This can occasionally lead to confu­
sion, so be careful. Before doing anything with messages,
ARexx must have access to the support libraly. To do this, inselt
the line "CALL ADDLIB('RexxSupport.library", 0, -30, 0)". This
makes sure the library is loaded into memory and is ready for
ARexx's use. As with all files, make sure the library name is
spelled correctly and has the ".library" extension. Once you
have done that, your program is ready to cope with messages.

To fully use messages, your ARexx program has to be
able to do a number of things. Among them, it mtist:

(1) open and close message ports
(2) send messages
(3) receive messages
(4) reply to messages
(5) wait for messages
(6) get data out of messages

We've already seen how to send messages, and the
support libralY has routines to do everything else. Before
receiving any messages, your program must open up a message
port. The OpenPort(port name) function causes ARexx to open
up a message port with the specified name for your program.
This name must be unique, and should be upper-case. ARex..x
will return a 1 if the port is opened successfully, and a 0 if it is
not. Note that the manual incorrectly states that you are
returned the address of the message port!

Once your POlt has been created, your program has to
wait for messages to arrive. To do this requires the WaitPkt(port
name) function. This puts your program to sleep until a
message is at the message port. When the port is no longer
empty, your program wakes up and continues executing at the
statement after the WaitPkt(). If there is already a message at
the message port, your program will never go to sleep.

(There is a bug in the support library for version 1.06
and before. In these versions of the library the WaitPkt() will
only wake up if a new message arrives. If there is already a
message at the message port WaitPkt() does not recognize it,
and waits until a new message arrives before it wakes up.)

With WaitPkt() awake, your program can ger any
messages from its message port. To do thiS, call GetPkt(portl
name). This takes the first message out of the message POlt and
returns the address of it to you. If there are no messages at the
port, the return value will be NULL ('0000 GOOO'x). Your
program should always check to make sure it gets a non-NULL
address for all messages. Your program may occasionally get
woken up even if there are no messages available yet, and the
system returns a NULL value if YOLl try to get a mes:;age from an
empty message port. Doing anything with a message pointer
equal to NuLL is a good way to get to know the Gum better.

After your program has successfully gotten a message, it
has to extract the information from it. Each ARexx message can
contain up to sixteen strings of characters, though typically
there is only one. To get at this data, your program must use the
GetArg(message address[, argument slotD function. This will
extract one of the strings, numbered zero through fifteen, and
return it to your program. If the slot number is omitted, then the
value in slot zero is retumed. This is one of the few calls that
requires your program to recognize the kind of data it is getting
in the message, because a call to GetArg() with an empty slot
number will abort your program with an error message.

Now you've gotten a message and retrieved whatever
data you want out of it. \Vhenever you've finished with a
message, your program should reply to it and give it back to the
program that sent it. The Reply(message address [, retum codeD
function will do this for you. If you want, you can return an
optional return code. This must be a positive integer, though its
meaning is entirely up to the program that sent the message.

Once you have completed all this processing, it's time to
go back to the beginning and do it all over again. When your
program is finished with its port, it should call the
ClosePort(port name) function. This closes your message port
and automatically replies to any messages still in it. While
supplying this function is not absolutely necessalY, as ARexx
will close any port you have open when your program exits, to
do so is a good habit to get into, and certainly can't hurt.

Well, that concludes our quick mn-down of the functions
you need to pass messages back and forth. Perhaps at this point
you are wondering, "How useful Can this be?" After all, most
programs that have ARexx capability don't have any provisions
for sending messages to ARexx macros already lUnning.

This is where things get interesting. ARex..x's message
capabilities have one limitation ... they can only cope with a
special message fOlmat called, oddly enough, a Rexx..l\1sg. These
are the only messages you can do a GetArg() on. Conveniently,
though, these are the types of messages that ARexx sends out.
The net effect is that one ARexx macro can exchange messages
with another.

The two sets of example programs use this fact to show,
I hope clearly, exactly how it works. The first two programs are
a matched set, "Simplel.rexx'· and "Simple2.rexx", and they
should be in your REXX: directOly. They each do very little, to

PREMIERE ISSUE 35

DJComputers.cz

keep the concepts as clear as possible. Simple1 starts up
Simple2 and sends it messages. Simple2 receives the messages
and prints out the contents of the passed string.

Simple1 starts out with the mandatory comment, starts up
trace mode, and tells ARexx to talk to AmigaDOS with the
ADDRESS statement. Next, it opens up the support library and
starts up Simple2 to receive its messages. It then waits a bit to
give Simple2 a chance to start up.

At this pOint, Simple2 has started. The first thing it does is
open up its message port. Then it goes into its message loop. It
waits for a message, gets it, gets the passed argument, and
replies to the message. The loop is very simple, of course.
There is no error checking or processing of the data, but it
should show pretty clearly how things are supposed to look.

Meanwhile, back in Simple1, we address the port opened
by Simple2. Once again, there is no checking to see if the P01t

has actually opened. It is possible (in fact, it's a very good idea)
to add this capability; it will be discussed a bit later in this
article. Anyway, in the main loop of Simple1, you'll notice the
line 'i i i'. This is obviously not an ARexx statement, so it is
packed up in a message and sent to Simple2's port. When it
gets printed out, however, you'll notice that, rather than
spewing out more than twenty lines of 'i i i', it first prints '1 1 l'
then '3 3 3' and continues on until it stops.

Why does this happen, you ask? Simple. One of the nice
features of ARexx is the way it treats variables. Simply put,

Listing One
Simple l.rexx

/*simplel.rexx*/
trace r
address command
call addlib("rexxsupport.library", 0,-30, 0)
run rx simple2
call delay(lOO)
address PORT
do i=l to 50 by 2

iii
end

exit

36 AC's TECH

anything that isn't a legal command, function, or quoted
constant is treated as a variable. \XThen ARexJc encounters a
variable in the course of program execution, it automatically
replaces the variable name with tbe variable contents. In this
case, as we use I as the loop variable, ARexx inserts tbe value
of I in before the message gets sent.

Now, wbile tbis is very bandy, it does introduce tbe
possibility of subtle bugs. Namely, it raises tbe possibility that
wbat you think is a string constant is actually a variable witb a
different contents than its name. This following program
fragment illustrates this:

/* Insert your favorite comment here */
Top = "Hi Mom!"
/* Time passes */
jump top

You would probably expect tbat "jump top" would be
sent out in a message. What really gets sent out is "jump Hi
Mom!", something else entirely. Tbe best way to avoid tbings
like tbis is to enclose anything you want sent out literally in
quotes. ARexx won't toucb anytbing witbin quotes, so it's best
to use tbem liberally wbenever possible to belp cut down on
tbe possibility of bugs. ARexx also automatically upper-cases
everything tbat isn't quoted, something else you may not
intended to have bappen.

In anything other than the trivial example programs we
just went over, there is going to bave to be at least some error
checking. Besides doing things we already discussed, like
cbecking tbe status code returned by OpenPort() and tbe
validity of tbe address of messages, it is always a good idea to
make sure the port we want to talk to exists. When dealing witb
otber programs, it is never safe to assume anytbing. Checking to
see if a port exists is a simple operation. In fact, ARexx has two
functions that can cbeck for message ports-Show() and
SbowList(). Tbe latter, SbowList("P;', port name), resides in tbe
RexxSupport library and returns a 1 if tbe named port exists and
a 0 if it does not. Sbow("P". port name) is in the basic library of
functions and performs identically to SbowList(). Tbe major
difference between tbe two is tbat Show() cbecks tbe lists that
ARex..'C keeps and only returns port names opened in ARexx
programs, while ShowList() examines system lists and will
check to see if any program in tbe system bas opened up the
named port. Show() only works if you have ARexx version 1.10

Listing Two
Simple2.rexx

/*simple2.rexx*/
callopenport(PORT)
call delay (300)
do i=l to 50 by 2

call waitpkt(PORT)
pkt=getpkt(PORT)
say getarg(pkt,O)
call reply(pkt)
end

call closeport(PORT)
exit

DJC
om
pu
ter
s.c
z

or above, so it is best to use ShowList() if possible.
Now that we have all the pieces to build a properly

working message-handling system into an ARexx program, lets
look at a more complex example than the last. Programs three
and four show a working set of programs. These use Willy
Langeveld's RexxARPLib library to access Intuition's gadget and
drawing routines. Make sure you have version 2.3 or greater of
the IibralY, as the circle drawing function isn't available in
earlier versions. The first program takes care of all the user
interaction, while the second does all of the drawing. Specializa­
tion like this, while a bit inefficient, makes programming easier.
Each program has to deal with a minimum number of things,
allowing it to be smaller and easier to understand, and much
easier to debug.

Graphicsl, the main program, first uses the ADDRESS
command to prepare to issue commands to AmigaDOS. Next, it
checks to see if the libraries it needs are already loaded; if not,
it loads them. Then, it spawns off a small program that uses the
RexxARPLib to do all the actual communicating with Intuition.
ARexx programs use this as an interface to perform all the
graphics and windowing routines we need. Each window a
program needs to have requires a separate CreateHost call.

CreateHost is the most peculiar function in the
RexxARPLib libralY. What it does, once called, is to take over
the process that called it. Its first parameter tells it the name of
the message POit it should create and listen to, and the second
tells it what message POit to send its messages to. Most of the
remaining functions in the library perform their various graphics
functions by building messages and sending them to a
Create Host created message port.

After we make the CreateHost call, the program goes into
a short loop that checks to see if the port has been opened. If
not, it waits a second and tries again. If, after ten seconds, the
port still hasn't been created, the program prints out an error
message and exits. Next, we start up the task that does all the
drawing, then open the port that will be getting the Intuition
messages.

The next few calls set up the window and gadgets that
are used to interact with the program. We create two gadgets,
labeled 'Box' and 'Circle', and have Intuition attach
CloseWindow and drag gadgets to the title bar. Our program
will receive a message with "CLOSEWINDOW' in slot zero
every time the CloseWindow gadget is hit. The actual closing of
the window is completely under the program's control.

At the same time the first program is opening up its
window and attaching its gadgets, the second program is
starting up. At this point, the first program goes into a loop,
checking to see whether the second program has opened up its
message port. If-again after ten seconds-it hasn't, we close
our window and message port, send a message to the user, and
exit with an error code.

If the second program has started successfully, the first
program sets itself up to talk to it. What follows is a fairly
standard message loop, the type which you'll become very
familiar with after one or two ARexx programs. It waits for a
message from the window we opened. When it gets one, it
extracts the data out of it and replies to the message. The
contents of the message is echoed out to the CLI window the
program was started from, so you can see exactly what it got.
That data is then sent to the drawing program so that it can

perform whatever processing needs to be done. The final step
in the loop is to check to see if the message we get is telling us
to close up shop. If so, we do; if not, the loop starts all over
again.

The second program is a lot like the first. It also checks
to see if the libraries it needs are open, and if they aren't, then it
opens them. It, too, stalts up a CreateHost process to manage
the drawing Window, and checks to see if it is created success­
fully. As we pass a message port name to CreateHost, we are
guaranteed that, with no gadgets in our window, we will never
get any messages from it. The program then opens its message
port and window.

The message-handling loop in this program is quite
similar to the loop in the first program. In this program,
however, there is a bit more in the way of processing that needs
to be done for each message that arrives. When we get a valid
message we first extract the data from it, then echo that data to
the CLI, and reply to the message. What follows next is a series
of checks on the passed data. We can be told to draw a circle,
draw a filled box, or close up. The circle routine chooses a
random radius, X and Y coordinates, and color. We set the
draWing pen to the color we just chose and draw our circle
outline. Unfortunately, there is no simple routine available to
draw filled circles, only outlines. The box routine is similar.
Random X and Y coordinates are chosen for the upper left and
lower right comers of the box, along with a random color. The
program sets the color and draws a filled rectangle. The
CloseWindow routine closes up the window and message port
and exits the loop. After the loop, the program exits with an
error code of zero, indicating a normal exit.

As you can see from the two examples, adding message
support to your ARexx programs is almost triVially easy,
requiring only a few simple ARex.."{ commands and function
calls. While proper use of the message facilities does take a little
thought, the actual routines themselves are straightfOlward. You
should find that, after a little while, you are writing programs
that can glue together many different applications in customiz­
ing your Amiga environment to work better for you.

PREMIERE ISSUE 37

DJComputers.cz

Listing Three
Graphics 1 .rexx

38 AC's TECH

/* Graphics1.rexx */
/* trace r */
address command
if -show ('L' ,"rexxsupport.library")

then call addlib("rexxsupport.library",0,-30,0)
if -show ('L', "rexxarplib.library")

then call addlib("rexxarplib.library",0,-30,0)
run rx "'call createhost(THEPORT,THEPORT2)'"
do i=l for 10

end

if showlist(P,'THEPORT')=O
then call delay(50)
else break

if showlist(P,'THEPORT')=O
then
do

end

say "It didn't ·..,ork!"
exit 10

run rx Graphics2.rexx
dummy=openport ('THEPORT2')
call openwindow('THEPORT' ,10,10,100,50,"CLOSEWINDOW+GADGETUP","WINDOWCLOSE+WINDOWDRAG","test")
call addgadget(THEPORT,30,13,1,'Box' ,BOX)
call addgadget(THEPORT,20,30,2,'Circle' ,CIRCLE)
do for 10

end

if showlist(P,GRAPH1)=0
then call delay(50)

if showlist(P,GRAPHl)=O
then do

say "Can't start second task!"
call closewindow(THEPORT)
call closeport(THEPORT2)
exit 10
end

address GRAPH1
do 1=1 forever

call waitpkt('THEPORT2')
pkt=getpkt('THEPORT2')
if pkt=' 0000 OOOO'x then

end

iterate
myarg = getarg(pkt)
call reply (pkt)
say '-' myarg '-'
myarg
if myarg == CLOSEWINDOW

then leave 1
end

call closewindow('THEPORT')
call closeport('THEPORT2')
exit

DJC
om
pu
ter
s.c
z

Listing Four
Graphics2.rexx

/*Subrexx prog #1. Gets messages and draws figures from them */
address command
/* trace r */
if -show(L,'rexxsupport.library')

then call addlib('rexxsupport.library' ,0,-30,0)
if -show(L,'rexxarplib.library')

then addlib('rexxarplib.library' ,0,-30,0)
run rx "'call createhost(GRAPH,GRAPH1)'"
do i=l for 10

end

if showlist(P,'GRAPH')=O
then call delay(50)
else break

if showlist(P,'GRAPH')=O
then exit 10

callopenport(GRAPHl)
call openwindow(GRAPH,100,100,400,100,,"WINDOWDRAG","Output Window")
do q=1 forever

call waitpkt ('GRAPH1')
do i=1 forever

pkt=getpkt ('GRAPHl')

end
exit 0

say 'Got Packet!'
if pkt='OOOO OOOO'x

then leave i
mycommand=getarg(pkt)
say '==' my command '=='
call reply (pkt)
if mycommand == CIRCLE
then do

/*No message, so we wait again */

radius=random(1,49,time('S'))
x=random(1+radius,399-radius)
y=random(l+radius, 99-radius)
color=random(1,4)
call setapen(GRAPH,color-l)
call drawcircle(GRAPH,x,y,radius)
end

if mycommand == BOX
then do

x=random(1,398)
y=random (1, 98)
x2=random(l+x, 399)
y2=random(l+y,99)
color=random(I,4)
call setapen(GRAPH,color-1)
call rectfill(GRAPH,x,y,x2,y2)
end

if mycommand == CLOSEWINDOW
then do

end

call closewindow(GRAPH)
call closeport(GRP2Hl)
leave q
end

/*exit outermost do loop */

PREMIERE ISSUE 39

DJComputers.cz

An Introduction to
the ilbm.library
by Jim Fiore, dissidents
BIX: jfiore

B ack in 1985, Electronic Arts introduced
the Standard for Interchange Format
Files, or as it has come to be known,

IFF. Several different file types (called FORMs)
were described, including those suitable for text
(FTXT) , mid-fi audio samples (8SVX) , and music
scores (SMUS). The one variant which has made
the biggest impact on the Amiga community is
the InterLeaved BitMap, or ILBM, FORM. ILBM
has become the undisputed standard for Amiga
bitmap-type graphics files, (literal computer
screen imagery versus the vector-type structured
drawings found in CAD or professional illustra­
tion programs).

It would be unthinkable for a modem paint or image
manipulation program not to support the import and export of
ILBM files on the Amiga. Thanks to this level of standardization,
Amiga users need not keep track of myriad file conversion
utilities which so often plagues the users of other systems.

As a developer or programmer, it is obvious that the
survival and usefulness of your applications are tied to the IFF
standard. What is not so obvious is the amount of work which
is required in order to read and write these files properly.
Initially, if you needed to create an ILBM reader/writer, you had
two choices: hack apart the Electronic Am C code for your
application (and language of choice, if not using C), or write
your own routines from scratch. The problem with the second
choice is that if you don't use a full implementation you mn the
risk of only being able to read files written in a specific manner.

The problem with the first choice was immediately
apparent to non C literate programmers. Even for established C
users, there was quite a bit of code to wade through plus a few
bugs as well. This boiled down to quite a bit of work for the
simple concept of allowing the user to save a given window as
an IFF ILBM file, so that the image might be imported into a

40 AC's TECH

desktop publishing or paint package. Besides, it's wasteful to
place this code into every application which needs it.

A standard Amiga shared library, which any application
can open and use, is a much more efficient approach. In the
ideal world, there would be standard system libraries which
would handle both high level and low level calls for reading
and writing IFF files. The 2.0 version of the operating system
does offer iffparse.library, which is designed to handle the low
level calls, although it does not offer high level, FORM specific
calls. Given our own needs here at dissidents, the ilbm.library
was born.

The ilbm.library was created by Jeff Glatt, and offers low
level and mid level general IFF calls, along with high level
ILBM-specific calls. The concept of the ilbm.library revolves
around the original Electronic Arts code. If you already have
applications which were written using this code, switching to
the ilbm.library will involve a minimum of work since the
library contains virtually all of the same functions but comes
with a few twists.

Unlike the original EA code, the library is written entirely
in optimized 68000 assembly, for small size (less than 7000
bytes) and fast execution. By eliminating the bulk of your
application's IFF code, your application will be both smaller and
faster. High level calls have been added which make saving and
loading ILBMs almost trivial. Although the libraty is skewed for
use with ILBMs, it can be used with any IFF file while special
support for ANIMs has also been added. Finally, you have the
ability to insert custom handlers for various aspects of the IFF
file.

In spite of its power and ease of use, ilbm.library does
not pretend to be everything for everyone. Programmers with
very special needs may still prefer to write all of their own
routines from scratch. For the vast number of people who need
a relatively painless way to deal with ILBMs in more general
ways, ilbm.library can save considerable development time.

If you find the library useful, you may use it in any of
your applications, be they commercial, shareware, or othetwise.
ilbm.library and its associated documentation and examples are
properly refetTed to as FreeWare. They are not public domain,
since the author still retains the copyright. Consequently, you
cannot sell the library as a distinct product, or represent it as

DJC
om
pu
ter
s.c
z

For the vast number of people who need a relatively painless
way to deal with ILBMs in more general ways, ilbm.library

can save considerable development time.

such. Short of that, there are no licenses, fees, royalties, or other
forms of rabid capitalist tJickelY to deal with. As a matter of fact,
you don't even have to tell your users where ilbm.library came
from. Also, since this is a standard shared (versus link) library,
you get to use it from the language of your choice.

It would be impossible to write a Single article covering
all of the functions and aspects of ilbm.library. Indeed, the Doc
file alone is some 67K bytes in length. You will find this Doc
file, along with examples in C and assembly, (with BASIC notes)
on disk. These examples include a picture viewer, an IFF
scanner, an ANIM example, and even how to use the library
with non-ILBM files (in this case, an 8SVX sample player). In
this article, we'll take a look at perhaps the most general
application of all: the ability to load and save ILBMs in a C
language program.

Our example is called AC_ILBM.c and it demonstrates
how you would use the ilbm.library in typical applications. It
will allow you to read in and display an ILBM file, in either your
own window and screen, or in one which the library will open
for you. It will also allow you to alter the colors of the picture
(using color.libralY) and save the result as a new ILBM file.
Usage is as follows: the program must be called via the CLI. The
second CLI argument directly after the program name will be
the name of the file to view. An optional third argument will
force the picture to load into a 640 by 200 window which we
will open. If the file is some other size it will be scaled to fit.
Without the third argument, the proper window and screen for
the picture will be determined by the library and opened for us.
The libralY will scan the file, and if there is an en'or, allow us to
print an error message to the CLI. If all goes well, the picture is
displayed. The ESCape key will be used to terminate the
program, FI will be used to call up the ColorTool palette so that
the picture may be altered, and F2 will save the picture as a
new file.

To use ilbm.library, we need to include the ILBM_Lib.h
header, and declare a few data items. This includes ILBMBase,
the library base pointer. As with any shared library, ilbm.library
must be opened before use, and closed upon program exit. We
will also need an ILBMFrame. This is a structure which the
library functions use to keep track of the file, and also allows
you to set certain options. The ILBMFrame must be properly
initialized before use (more on this in a moment).

This application uses the libraty's two high level func­
tions: LoadIFFToWindow(), and SaveWindowToIFF(). A mid
level function, GetIFFPMsg(), will allow us to extract pointers
to error strings which we can then display to the user. In this
example, the strings are just printed to the CLI, but they could
just as easily appear in an application's title bar or status line, or
in a Requester. Initially, the program opens the required
libraries and scans the command line arguments to determine
the proper mode of operation. If a third argument is present, a
default screen and window are opened.

Once this is complete, the iScreen, iWindow, and
iUserFlags fields of the ILBMFrame are initialized, and
LoadIFFToWindow() is called. Notice how simple the call to
LoadIFFToWindow() is. It only takes two arguments. The first
argument is a pointer to a string which holds the name of the
ILBM file you wish to load, and the second argument is the
address of your ILBMFrame. If the iScreen and iWindow fields
are non-zero, LoadIFFToWindow() assumes that you have
opened a screen and window, and will attempt to load the
ILBM file into the window, scaling the picture if necessary. If
these fields are initialized to 0, then LoadIFFToWindow() will
examine the picture file, and open a proper screen and window
for you. The addresses of the window and screen will then be
placed in the iScreen and iWindow fields, so that you can get to
them. This function will return 0 if all goes OK. If there is an
en'or, the return value can be used as the argument to
GetIFFPMsg() in order to obtain an error string.

The iUserFlags field allows you to customize the treat­
ment of the loaded file. These are the possible flags:

MOUSEFLAG
SCREE:t\TfLAG
COLORFLAG

NOSCALE

ADJUSTVIEW
FORCEPARSE
ANIMFLAG

Make the Intuition pointer invisible.
Hide the screen's title bar.
Don't use the loaded colorMap. Preserve the
present map instead.
Don't scale a lower res pie to flll a higher res
display.
Do overscan if larger than Intuition view.
Continue parsing after A.NIM.
Set if it's an ANIM file.

PREMIERE ISSUE 41

DJComputers.cz

Get more work done
in less time. Add a Vidia ,m quick reference

to your workspace or studio.

< i' (iU"""ll

Proiesslonal Page

••••••• • ••••••
I

,,41,],;

The Vidi:! Guide to Professional Page 1<';
like having a preview mode for your
idl'as. Sec what type and graphics look
like rrinlcd al 31KI and I 27() dri. Shows
COlilmOIl design clements: rOil I
for Adohe typcral'cs: samples of Cumrll­

graphic Iypl'faces: halflunl' fills: pallern
fills: fluttcrn fills and halflulH..'s
comhinations of linc patterns. weights.
alld halftllll<,'S: text Si7.('S from I to IlO
poillts; linc spill'ing (relative :md IC:I<.lcd):
re"erse Iype: basc.-linc shirts: halftollcd
lext: lrad;.ing shiffs: lext passages in vnri­
OliS Iype sizes: mu.1 keyboard ("odes for
SYlIlhols alld ZaplDingilals. Also in­
cludes keyhoard cOllumlllds and text for­
Illalling rodrs for Professional Page.

Vidia Guide to Professional Page
12 pages • $6.95

\Vhy any programmer
have to through hundreds or pages of'
hooks anti manuals to find simple inforM
Illation. likc prinlf codes. or the syllW.x
for hillicld deciarations. or Ihe ANSI se­
qucm:c 10 turn 011 hold face'? YOII usc this
sturf l'ollslmllly; Iwvillg to look it lip
slows you down, Thiu's why we dCM
signed the Allliga Pmgnll11Jllcr"s Quil...'k
Rt.'reITIIl'c. It contains a cOl1lplcll' C
guide: 6XIKKI assclIlhly insll'Uclioll lisl:
(furl! mcdilations: ANSI screen codes:
Console device codes: Rawkcy l'fl(tcs;
opliolls !lags I'm SAS/Lallice (' allll
A/lec C: a 256-hyle AS('Illahlc. with hi·
nary and the Amig .. th:mH:tcr sci; and
!)oohh',\ /)0',\- /)0""1.\'. dlllllks or WiSM
d(llll ftJr Anliga pn)gral11111illg,

flAlUi,1
PROGRAMMER'S

QUICK REFERENCE

Amiga Programmer's Quick Reference
16 pages • $7.95

=.=... .Aif.ll.tA. (lJ1.hl·1
Tlu .. 'rc is nothing ('be like it. The Amiga
Graphics C<lnl .. now in its
st.'coml printing: M_ is an Amig:! origill;II,
Inspircd hy the power and tlcplh of Ihl'
Amiga"s graphics" it cOIlli1incs an cdCl"tk
mix of inlormation for IIsers workillg
\I,/jlh graphics Oil the Amiga. S,,:rct."'11 pixd

h.'t j'lH'J I11l';'lsurc till' sile of nh.it.TIS

011 SLTl'l'IL Diagrams show the strul'turl'
of IHal a"d IISV m(><lels. mltlilivc alld
sllhlradive color mixing, and till' c!cl'Iro­

Il1agcl1tk' speL'lrUIH, T;lhles list display
memory required for evcry graphics
11101.1",: IFF file cOlllpressiull I'ntios: RCl-B
Illllnhl'rs for colors: pixel slwpes; key
comhimltions for special dmraclers: 1l1aXM

il1ll1m pHge sizes in p,lint programs; and
IlHnc. It's great!

,".-, ..
.. -!. ,. :---- -.'

Ofl". __ ··,_r_ --- -_ -

r---

Amiga Graphics Reference Card
4 pages • $2.95

All Vidia quick references are 8.5" x 11" and printed on glossy cardstock.

..
VIOlA ™ ..

Sec your dealer. or tlnkr from: Villia.
1'.0. Box II HO. Mallhallan ileal'll. ('i\
<102M,. PIe"se add $0.45 per l'Opy for
posl:.lge: CA res. add statc tax .

Circle 157 on Reader Service card.

42 AC's TECH

The scaling routines of the ilbm.library are suitable for
general purpose applications, and have specific limits. For
example, they will not remap colors if you tly to stuff a four
bitplane image into a two bitplane screen, or vice versa. Also,
due to the inherent pixel color / pOSition interdependence of
the HAM viewmode, scaling may result in some rather odd
looking colors for HA.JYI files.

If you need to perform color remapping or HANI scaling,
you should use the mid level function LoadILBM(), which gives
you the option of adding custom handlers for the various
components (FOR.i\1s, PROPs, etc.) Also, it is possible to call the
libraty's ScaleImage() function for your own special needs. In
contrast to the above, if a third command line argument is not
given, we allow the libraty to open the screen and window for
us (the else clause). Note how the iScreen and iWindow fields
are initialized to O. When LoadIFFToWindowC) returns, we
copy the addresses of these items into global pointers for future
reference. It is very important to note two things at this point: 1)

It is up to the application to close down the window and screen
upon exiting, since the ilbm.library cannot keep track of these
items. 2) The IDCMP of the newly opened window is bare. You
should immediately call the Intuition function ModifyIDCMP()
in order to hear the so Its of messages you're interested in. In
the example, we are only interested in RA WKEY events, so
that's what we set.

No matter whether we open the window and screen, or
let the Iibraty do it, we fall into the application function

). This just scans the IDClVIP and looks for
RA WKEY messages. It will do one of three things. If the ESCape
key is hit, the program ends and the window, screen and
libraries are closed. If F2 is hit, the high level ilbm.librmy
function SaveWindowToIFF() is called. This function takes two
arguments: a pointer to a string indicating the name for the file
to be saved, and a pointer to the window to be used. In this
case, we just use the default name of RA,vI:New.pic. If the save
is successfuL the function returns O. A non-zero return value
indicates that something went wrong, such as not enough disk
space. There is a corresponding mid level function which offers
a bit more flexibility, called SaveILBM(). If FI is hit, a color
palette is displayed, allOWing you to change the picture'S color
values. This color palette is created using the dissidents
color.libraty. The call DoColor(), opens and monitors the
palette. It is a full-featured color palette, with your choice of
RGB or HSV sliders, a default colorMap, and Copy, Spread, and
Undo capabilities. (color.libraty is also diSSidents FreeWare.)
ColorTool is designed for use with non-HANI viewmodes.
ColorTool will open on HAM screens, but the results may be
hard to predict and it may appear to do nothing at all.

The example program was compiled and linked using
Manx 5.0, but there should be few modifications in order to get
it to work under the SAS/Lattice system. For starters, remove the
reference to #include "functions.h", and replace it with #include
"proto/all.h". Make sure that you link with the ILBM and Color
libraty glue routines. Before lUnning the example, copy both
ilbm.library and color.library to your liBS: directoty.

There are many things you can do with i1bm.libralY, and
we have only scratched the surface here. There are over 30
basic functions in the Iibraty. For more information, I direct you
to the documentation and examples on disk. Have fun.

DJC
om
pu
ter
s.c
z

J Hierarchical
Music

Specification
an Interactive Programming Language Language J

lForth is ideal for experts or beginners with: for experimental music composition and performance.
• complete Amiga toolbox support HMSL is an object oriented extension to lForth with:
• simple IFF & ILBM tools, ego blit, fade, wipe • an extensive MIDI toolbox & input event mapping
• source level debugger with breakpoints • tools for building your own user interfaces
• ODE - object oriented development environment • hierarchical scheduler for playing abstract data
• fast compilation, small programs in seconds • tools for complex algorithmic composition, ego
• fast execution, compiles directly to 68000 code Markov chains, IfF noise, graphical shape editor
• generates small, royalty free applications • support for Amiga local sound and samples
• integrated assembler and disassembler • complete source code provided with manual
• numerous examples and tutorials in manuals If your music is too unusual to create using

Get a little closer to your Amiga with lForth. traditional music applications, write your own
Examine or change data structures, test subroutines, using the tools HMSL provides. HMSL is being
examine source code directly and interactively - used in hundreds of studios and colleges worldwide
the lForth way. Suggested list price = $179.95. by some of the today's most creative composers.
lForth was developed by Delta Research. HMSL was developed by Frog Peak Music.

Find out more about lForth and/or HMSL by calling or writing: PO Box 151051, San Rafael, CA
AmigaisarcgislCrcdlradcmarkofCommodorcBusincssMachincs 94915-1051 USA (415) 461-1442

Circle 197 on Reader Service card.

/**

Ilbm.library C application for Amazing Computing Tech. Application written
by Jeff Glatt and Jim Fiore, dissidents. November 7, 1990. Set TAB width
to 3.

Using Manx 5.0:

cc -mcd AC ilbm.c
as -cd Ilbmlnterface.asm
as -cd Colorlnterface.asm
In AC ilbm.o Ilbmlnterface.o Colorlnterface.o -lcl

A note about HAM images: First, ColorTool is designed to work with ordinary
(non-HAM) screens. You will have some control over HAM screens, but not

much, Second, while ilbm.library works perfectly well with HAM images under
ordinary applications, scaling HAM images while loading can produce some
rather bizarre results. If really need to do something like that, you should
use the lower level functions to read in the HAM image, and perform the
scaling yourself,

**/

#include "math.h"
#include "functions.h" /* Manx C declarations. Lattice use proto/all.h */
#include "intuition/intuition.h"

Listing One
i1bm,library
Sample Application

PREMIERE ISSUE 43

DJComputers.cz

#include "exec/tasks.h"
#include "exec/types.h"
#include "exec/memory.h"
#include "graphics/gfy.base .h"
#include "graphics/rastport.h"
#include "graphics/gfx.h"
#include "graphics/view.h"
#include "graphics/text.h"
#include "intuition/intuitionbase.h"

#include "ILBM Lib.h"

#define INTUITION REV 33L
#define GRAPHICS REV 33L
#define DEPTH 4

struct IntuitionBase *IntuitionBase
struct GfxBase *GfxBase = OL;
struct Window *wind_global =
struct Screen *screen_global

= OL;

OL;
= OL;

/* Data for the dissidents ilbm.library */
struct ILBMBase *ILBMBase = OL;
ILBMFrame myILBMFrame;

/* Data for the dissidents color.library */
struct ColorBase *ColorBase = OL;
extern LONG DoColor();

struct TextAttr my_font_attr = {(UBYTE *) "topaz. font" ,TOPAZ_EIGHTY, \
FS_NORMAL, FPF_ROMFONT};

struct NewScreen ns {O,0,640,200, DEPTH, 0,1, HIRES, SCREENBEHIND 1 \

CUSTOMSCREEN, &my_font_attr, (UBYTE *)"Screen", NULL, NULL);

struct NewWindow nw = {0,0,640,200, -1,-1, RAWKEY, SMART_REFRESH 1 ACTIVATE 1\
BACKDROP 1 WINDOWDEPTH 1 BORDERLESS, NULL, NULL,
(UBYTE *)"Background Window", NULL,NULL, 640,200,640,200, CUSTOMSCREEN);

VOID open_all(), damp_mop(), hang_around();

VOID main(argc, argv)
LONG argc;
UBYTE *argv[l;
{

IFFP Result;

if(argc == 1
{

/* No filename given */

puts ("USAGE: AC ILBM filename [xl \n");
exit () ;

if(argc = 3)
{

/* open our own screen, and force pic to scale */

if((screen_global = (struct Screen *)QpenScreen(&ns))
damp_mop () ;

nw.Screen = screen_global;

if((wind_global = (struct Window *)QpenWindow(&nw))
damp_mop() ;

44 AC's TECH

NULL)

NULL)

DJC
om
pu
ter
s.c
z

ScreenToFront(screen_global);

myILBMFrame.iScreen = screen_global;
myILBMFrame.iWindow = wind_global;
myILBMFrame.iUserFlags = SCREENFLAG; /* hidden title bar */

Result = LoadIFFToWindow(argv[l], &myILBMFrame);
if (!Result)

hang_around();

else /* let ilbm.library create screen and window */

myILBMFrame.iScreen = 0;
myILBMFrame.iWindow = 0;
myILBMFrame.iUserFlags = SCREENFLAG;

Result = LoadIFFToWindow(argv[l], &myILBMFrame);
if (!Result)
(

screen_global = myILBMFrame.iScreen;/* save these, since we'll have to */
wind_global = myILBMFrame.iWindow; /* close them on our own, later */
ModifyIDCMP(wind_global, RAWKEY);
hang_around() ;

/* error exit through here */
puts(Get IFFPMsg(Result));
damp_mop();

/**
Opens Intuition, Graphics, Color, and ILBM libs

**/

if(! (IntuitionBase
damp_mop() ;

(struct IntuitionBase *)OpenLibrary("intuition.library", INTUITION_REV»

if (! (GfxBase = (struct GfxBase *) OpenLibrary ("graphics . library" , GRAPHICS_REV»
damp_mop () ;

if (! (ILBMBase = (struct ILBMBase *) OpenLibrary ("ilbm.library", OL»))
(

puts ("Need the dissidents ilbm.library in LIES:");
damp_mop () ;

if(! (ColorBase = (struct ColorBase *)OpenLibrary("color.library", OL))
(

puts ("Need the dissidents cOlor.library in LIBS:");
damp_mop() ;

1*** ***********************
Closes window, screen, libs

**/

if (wind_global
if(screen_global
if(ColorBase)
if (ILBMBase)

CloseWindow(wind_global);
CloseScreen(screen_global);

CloseLibrary(ColorBase);
CloseLibrary(ILBMBase);

PREMIERE ISSUE 45

DJComputers.cz

if(GfxBase) CloseLibrary(GfxBase);
CloseLibrary(IntuitionBase); if(IntuitionBase

exit(FALSE);

/**
IDCMP handler. The following RAWKEY functions are implemented:
ESC: Quit program.
FI: Call up the dissidents ColorTool.
F2: Save the picture as "RAM:New.pic"

**/

VOID hang_around{)
{

struct Intuil1essage *mes;
ULONG err_I;

for (;;)
{

Wait (I « wind_global->UserPort->mp_SigBit);

while{ mes (struct IntuiMessage *)GetMsg(wind_global->UserPort))
{

ULONG class = mes->Class;
USHORT code = mes->Code;

ReplyMsg{ (struct Message *)mes);
switch { class)
{

case RAWKEY:
switch { code
{

case Ox45: /* ESCape
damp_mop () ;

quit */

break;

case Ox50: /* FI = ColorTool */
err I = DoColor{ 0, screen_global);
if(err_l < 0)
(

DisplayBeep(screen_global);
puts ("color.library error");

break;

case Ox51: /* F2 = Save */

break;

if(SaveWindowToIFF{ "Ram:New.pic", wind_global))
puts ("Save error");

else
puts ("Save OK");

DisplayBeep(screen_global);
break;

1*************************** DAT'S ALL **************************************/

46 AC's TECH

DJC
om
pu
ter
s.c
z

DJComputers.cz

Since you are dedicated to
m.astering your Amiga and using it
to its fullest potential- be sure to

m.aximize your possibilities
when it com.es to required reading, too!

That is easily accom.pUshed by
subscribing to the "Am.azing" famlly of
high-quality AC publications, including
the original m.onthly Amiga m.agazine,

the only com.plete Amiga product guide,
and now, thefirst disk-based,

all-technical Amiga publication!

Amazing Computing.
AC's GUIDE.
AC's TECH.

When you consider the m.any
possibilities confronting you today­

AC publications represent Am.azing values
you sim.ply can't afford to overlook.

call 1-800-345-3360
(credit card orders only; please have Visa or Mastercard ready)

'I

,
:
I ,

I
f

DJC
om
pu
ter
s.c
z

Introducing the
Premiere ACI s TECH Disk
A few notes before you dive into the disk!

• You need a working knowledge of the AmigaDOS CLI as most of the files on the
AC's TECH disk are only accessible from the CLI.

• In order to fit as much information as possible on the AC's TECH Disk, we archived
many of the files, using the freely redistributable archive utility 'Iharc' (which is
provided in the C: directory). Iharc archive files have the filename extension .Izh.

To unarchive a file foo.lzh, type Ihare x foo
For help with Iharc, type Ihare ?

AC's TECH DISK
GOES HEREI

Please notify your
retailer If the

AC's TECH Disk
Is missing.

We pride ourselves In the quality of our print
and magnetic mecIo publlcottons. However. In
the highly unlikely event of a faulty or dam­
aged disk, please retum the disk to PfM
Publications, Inc. for a free replacement.
Please retum the disk to:

AC'sTECH
DIsk Replacement
P.O. Box 869
Fall River, MA 02720-0869

CAUTION!
Due to the technical and experimental nature of some of
the programs on the AC's TECH Disk. we advise the
reader to use caution. especiaIly when using
experimental programs that initiate disk
access. The entire liability of the qualhy and
perfonnancc of the software on the AC's TECH Disk is
assumed by the purchaser. PiM Publications, Inc, their
distributors, or their retailers, will not be liable for any
direct, indirect, or consequential damages resulting
from the use or misuse of the software on the AC's
TECH Disk. (This agreement may not apply in all
geographical areas)

Although many of the individual files and directories on
the AC's TECH Disk are freely redistributable, the
AC's TECH Disk itself and the collection of individual
files and directories on the AC's TECH Disk are
Copyright ICI990, 1991 by PiM Publications, Inc, and
may not be duplicated in any way. The purchaser
however is encouraged to make an arcblve/backup copy
of the AC's TECH Disk.

Also, be extremely careful when working with
hardware projects. Check your work, twice, to avoid
any damage that can happen. Also, be aware that using
these projects may void the warranties of your
computer equipment. PiM Publications, or any of it's
agents, is not responsible for any damages incurred
while attempting this project.

PREMIERE ISSUE 49

DJC
om
pu
ter
s.c
z

Developing a Relational
Database in C, Using dBC III

- by Robert Broughton-

dBC III, a Lattice product, is a set of C-callable functions
which read and write disk files in the dBASE "standard" format.
It is a mature product, having been available for at least three
years and it is valuable to Amiga software developers because it
proVides the capability for reading and writing disk files with
random access, using keys rather than byte displacements. The
best way to illustrate this is with an example. Here is a C
structure which defines a record in a file containing information
about sporting goods:

struct SportsRecordLayout
{

sport char[lS];
item char[17];
material char[lO];
weight char[7]i
vendor char[30);
price char[9];

} SportsRecord;

Note that although "weight" and "price" are obviously
numeric values, they are defined here as "char"; this will be
explained later.

dBC III provides a function, dBgetr, which can read a
record from a file like this by supplying the record number.
However, any file processed by dBC III can have one 01' several
"indexes" associated with it. In this example, you may want to
see all items used for a particular sport; if you supply the key
"baseball", you would expect to retrieve records with "bat",
"ball", "infielder's glove", "catcher's mitt", etc. in the "item" field.
To do this, the "sport" field would be set up as in index. You
might also want to retrieve a specific piece of equipment, such
as a baseball bat. This can be done by defining "sport+item" as
an index. You may want to see all the sports in which bats are
used (baseball, softball, and cricket), so "item" can be defined
as an index. You may want to see all of the items provided by a
particular vendor (Louisville Slugger also makes hockey sticks),
so "vendor" could be an index.

A couple of notes here: for "material", baseball bats can
be made of either wood or aluminum. It is OK for keys to be
duplicated within a file. You may have a separate file of
vendors, with their addresses, phone numbers, local distributors,
and credit terms. ObViously, the "name" field in this file would

50 AC's TECH

be an index. If an exact match exists between the "name" in the
"SportsRecord" file and a "name" in the "Vendor" file, you have
a "relation". Instead of having a 30-character name in the
"SportsRecord", you could have the record number for the entlY
in the "Vendor" file.

With dBC III and other compatible products, the index
exists as a separate file. This file contains keys and record
numbers, organized into a B-tree structure, but this is nOlmally
transparent to the user. Before a dBC III file is processed, it
must be opened with a function named dBopen, and all index
files associated with it must be opened with dBiopen. Both of
these functions initialize a file descriptor which will be used for
all future references to these files.

Now, to read a "baseball bat" record: Assume that
"sportfd" is a pointer to the file descriptor for the "SportsRecord"
file, and "sportiternfd" is a pointer to the file descriptor for the
"sport+item" index. The following piece of code will attempt to
read this record:

struct SportItemStruc

sport[15];
item [17];

} SportItemKey;

memcpy(SportltemKey.sport, "baseball
len(SportltemKey.sport));

memcpy (Sport "temKey • item, "bat
len(SportltemKey.item));

" ,

" ,

if (dBgetrk(sportfd,sportitemfd,&SportltemKey,
&SportsRecord,&status) != SUCCESS)
{

printf("didn't work\n");
}

else
{

/* continue processing */
)

If there actually is at least one record in the file with
"baseball" in the sport field and "bat" in the item field, the call
to dBgetrk should retrieve it, and copy the data into the
"SportsRecord" structure. If you want to read more "baseball
bat" records, you would call dBgetnr (get next record) repeat­
edly, until the "item" field contains something other than "bat".

DJComputers.cz

dBC III has applications beyond conventional database applications. I used it

to control an interactive video system. It could be used for adventure games,

and in any situation where referencing data with names is important.

A routine to add a record to this file would look some­
thing like this:

if (dBputrk(sportfd,sportitemfd,&SportsRecord.sport,
&SportsRecord) SUCCESS)

(

printf("error writing file\n");
break;

}

if (dBckey(sportitemfd,&hold,&recno) SUCCESS)
(

printf ("dBckey failed\n");
break;

)

if (dBakey(itemfd,&SportsRecord.item,recno) SUCCESS)
{

printf ("dBakey unsuccessful \n");
break;

}

if (dBakey
(vendorfd,&SportsRecord.vendor,recno) != SUCCESS)

(

printf("dBakey unsuccessful\n");
break;

}

If a file has only one index, it is necessary only to call
dBputrk, which will write the record to the file and update the
index. If a record already exists in the file which has the same
key as the record being written, that record will be overwritten.
If no such record exists, a new record will be created.

If a file has more that one index, you must go to some
trouble.dBakey is used to add a record which is already in a
file to an index. However, you must supply it with a record
number and dBckey must be called in order to find out what
the record number is.

Note that there is no index for the "sport" field. It isn't
necessary, because the function dBtkey, which allows you to
specify a partial key, can be used to locate all records for a
certain sport using the "sport+item" index.

In this example, the keys are a part of the record being
written. This is the typical situation, but there are other pOSSibili­
ties. Suppose that one of the key fields is a person's name, and
this name can contain both upper- and lower-case characters.
You do not want case-sensitivity, hmvever, when you look up a
person in this file. You could do the following:

for (n=O; n<sizeof (rec.LastName); :-l++)

keyfield[n] = tolower (rEc.LastNa.!:',e [n]);

if != SUC:ESS)
(

writing

Now, the keys in the index are not the same as what is
actually in the file, but it doesn't matter, as long as yO\.1 convert
a supplied key to lower case prior to calling dBgetrk to read the
record. It's possible for keys to have no resemblance whatso­
ever to any of the data actually in the record, as long as it
makes sense for yoUI' application. It would also be possible to
have multiple keys for the same record, by calling dBakey to
add the additional keys.

dBASE Compatibility Issues
In the early stages of your development process, you

must decide whether the files that you created need to adhere
to any restrictions regarding what sort of data can or cannot be
in these files. dBC III allows you to read and write dBASE­
compatible files, but does nothing in the way of enforcement. If
you are creating files which will only be read by your own
programs, it is perfectly OK to store binary data in fields, or use
variable length and/or delimited fields. If, however, yO\.1 want
your files to be read by other programs capable of processing
dBASE-compatible files, you must follow some rules.

What programs can process dBASE-compatible files?
AmigaVision uses them for database operations, but not for
scripts. Organize! is a simple but useful program for putting data
into files and displaying it. dBMAl'i (version V) is an attempt at
implementing the dBASE language on the Amiga. It can read
and write files processed by dBC III, but it uses a different
format for indexes. This does not have to be a bio problem as
long as your files are not very large; just simply
prior to using them. There are some other products, Superbase,
for example, that can import and export dBASE-compatible files.

If you want your application to be dBASE-compatible,
you must follow the following rules:

1) Don't store C-type null-terminated strings. Instead, fill the
field out with spaces. A function, dBstrcpy, is provided to do
this.

PREMIERE ISSUE 51

DJC
om
pu
ter
s.c
z

2) Numeric data fields are represented as right-justified numeric
digits, and a pair of functions, dBatofld and dBfldtoa, are
provided to convelt numeric fields from and to null-terminated
ASCII strings, which mayor may not contain a decimal point. If
you intend to do arithmetic in C with this sort of data, you must
also call atoi to convert it from ASCII to binary (sprintf to
convert it in the other direction). Numeric keys, however, are
represented as floating-point numbers in the index file, and
dBatokey is provided to do this conversion.

3) Logical fields should contain "T" or "F".

Memo Fields
dBASE files are allowed to have "memo" fields. Memo

fields allow variable-length text to be associated with a data
base record. This data is stored as blocks within a separated file,
and a pointer to the block is stored as a ten digit number in the
actual data base record. dBgetm and dBputm are provided to
deal with memo fields.

Processing of memo fields by dBC III is painfully slow.
When a memo field is written, the high-order bit of every byte
in the text is turned on, for no obvious reason. When a memo
field is read, these bits are turned off again. This makes process­
ing memo fields very slow; it takes 3-5 seconds to read a memo
field and display it on the screen of an Amiga 2000. The text
used in my application often includes non-English characters,
and fooling with the high-order bit in this situation is fatal. I
ended up writing my own routines in C and Assembler to
process memo fields and I found this to be reasonably simple to
do.

Creation of Files
A function is supplied with dBC III to create files. You

should try to avoid using it. Use Organize! or dBMAN instead.
This rule also applies if you need to add a field to a file, remove
a field from a file, or change the size of a field.

Reindexing
Sooner or later, your files will have to be reindexed. You

would have to do this if the file was modified by dBMAN, or
imported, changed, and then exported by Superbase. If a guru
or power failure occurs when you are updating an index, or in
that interval after a record is added (or a key is changed) and
before the index is updated, the file and the index will be in
disagreement.

A reindexing operation simply recreates an index file
from scratch, by reading every record in the data file, and
adding an index for each record. The easiest way to accomplish
this is to use Organize! to do it. Unfortunately, Organize! can
deal with only the simplest types of keys; keys may consist of
only one field, and the key can only be what this field actually
contains. (For example, Organize! wouldn't be able to deal with
the case-insensitive example given earlier.) If your keys are
more complex, you must write your own program to do
reindexing, which could look something like this:

52 AC's TECH

1* the second parameter to dBicreat is the dBASE index
expression
the third parameter is the length of the index
the :ourth parameter is the index type

C = character
N = numeric */

if (dBicreat
("sportitem.ndx","SPORT+ITEM",32,'C') != SUCCESS)

{printf("dBicreat unsuccessful\n");
exit (TRUE);)

if (dBicreat ("item.ndx", " ITEM" ,17, 'C') != SUCCESS)
(printf("dBicreat unsuccessful\n");
exit (TRUE) ;)

if (dBicreat("vendor.ndx","VENDOR",30,'C') != SUCCESS)
(printf("dBicreat unsuccessful\n");
exit (TRUE) ;)

if (dBopen("sport.dbf",&sportfd) != SUCCESS)
(printf("dBopen unsuccessful\n");
exit (TRUE);)

if (dBiopen ("sportitem.ndx", &sportitemfd) != SUCCESS)
{printf("dBiopen uns"Jccessful\n");
gato ql;)

if (dBiopen("itern.ndx",&itemfd) != SUCCESS)
{printf("dBiopen unsuccessful\n");
goto q2;)

if (dBiopen("vendor.ndx",&vendorfd) != SUCCESS)
{printf("dBiopen unsuccessful\n")i
goto q3;)

1* find out how many records there are in the file *1
dBsize(sportfd,&recno);

for (j=l; j<=recno; j++)
{
if (dBgetr(sportfd,j,&SportsRecord,&status)

(

)

pri:1tf("dBgetr unsuccessful\n");
goto q4;

SUCCESS)

1* since we defined this index to be 32 bytes long, this index
will consist of both the "sport" and "item" fiel.ds */

if != SUCCESS)

q4:

{

}

printf ("dBakey u:1successful \n") ;
goto q4;

if (dBakey(itemfd,&SportsRecord.itern,j) != SUCCESS)
{

)

printf ("dBakey unsuccessful \n");
goto q4;

if (dBakey(vendorfd,&SportsRecord.vendor,j) != SUCCESS)

)

printf("dBakey u!Csuccessful\n");
goto q4;

if (dBiclose(vendarfd) != SUCCESS)
printf("dBiclose unsuccessful\nn);

q3:
if (dBiclose(itemfd) != SUCCESS)

printf("dBiclose unsuccessful\n")i
q2:
if (dBiclose(sportitemfd) != SUCCESS)

printf("dBiclose unsuccessfu1\n N);

q1:
if (dBclose(sportfd) != SUCCESS)

printf("dBclose unsuccessful\n");

DJComputers.cz

Continue the Winning Tradition
With the SAS/C® Development System for AmigaDOSN
Ever since the Amiga· was introduced, the Lattice· C Compiler has been the compiler of choice.
Now SAS/C picks up where Lattice C left off. SAS Institute adds the experience and expertise
of one of the world's largest independent software companies to the solid foundation built by
Lattice, Inc.
Lattio! C's proven track reconl provides the compiler with the following features:

SAS/C Compiler Macro Assembler
Global Optimizer LSE Screen Editor
Blink Overlay Linker Code Profiler
Extensive Libraries Make Utility
Source Level Debugger Programmer Utilities.

SAS/C surges ahead with a host of new features for the SAS/C Development System for
AmigaDOS, Release 5.10:

Workbench environment for all users Additional library functions
Release 2.0 support for the Point-and-click program to set
power programmer default options
Improved code generation Automated utility to set up new projects.

Be the leader of the pack! Run with the SAS/C Development System for AmigaDOS. For a
free brochure or to order Release 5.10 of the product, call SAS Institute at 919-677-8000,
extension 5042.

SAS and SAS/C are registered trademarks of SAS Institute Inc .•
Cary. NC. USA.

Other brand and product names are trademarks and registered
trademarks of their respective holders.

Circle 146 on Reader Service card.

.A r SAS Imtiru" I.,
SAS Campus Drive

-- ® Cary, NC 27513

Note that the value of "status " returned by dBgetr is not
checked. so any deleted records in this file will be included in
the indices.

tutorial, and all of the examples in the tutorial are provided on
the diskette with the software. I only found a couple of minor
:lmbiguities in the manual , and one serious bug. On page 7-23,

Record Deletion
The function of the "status" variable in the call to

dBputrk in the first example merits discussion. When dBdelete
is called, the record specified is not actually removed from the
file; It is only "marked " as deleted. If you later attempt to read a
deleted record with dBgetrk or another routine, the value
"SUCCESS" will still be returned , but the value of "status" will be
"INACTIVE" instead of "ACTIVE".

Both Organize! and dBMAN have the capability to "pack"
a file. This actually removes deleted records from a file. If you
don't have one of these products, you must write your own
program to do it.

Don't forget that packing a file causes the "record
numbers" (the physical position of a record with the file) to
change.

Evaluation of dBC III
I encountered few bugs in the dBC III, and the perfor­

mance is good, as long as you don't use memo fields. The
manual is complete , and vely useful. One chapter is a complete

a global variable named _dbcmsiz is discussed . If you attempt to
assign a different value to thiS, it must be defined as ShOI1, or
you will be in lots of trouble. This problem is obViously a
reflection of the fact that this software was developed for PCs.

dBC III has applications beyond conventional data base
applications . I used it to control an interactive video system. It
could be used for adventure games, and in any situation where
referencing data with names is important.

About the Author

Robert Broughton is a consultant in
Vancouver, Canada. Robert's recent project
was the development of an interactive video
system, _Laser Atlas_, targeted towards the
tourist industry. He can be reached c/o AC's
TECH or via USEnet at al040@mindlink.UUCP.

PREMIERE ISSUE 53

DJC
om
pu
ter
s.c
z

Using Intuition's
Proportional Gadgets

from Absoft's FOR,.RAN 77

by Joseph R. Pasek

Introduction
The Amiga has developed a reputation as an excellent

low cost but powerful computer with many areas of application.
Both the Amiga 3000 and the Amiga 2000 (or 2500) equipped
with either an 68020/68881 or 68030/68882 board and the
appropriate software application software can also become a
very powerful scientific and engineering workstation. The
programming language that is most often employed in the
scientific and engineering applications is the venerable FOR­
TRAN language. Due to the shear bulk of available source code
written in FORTRAN and the relative ease at which scientists
and engineers program with it, it is still the language of choice.

The Amiga programmer, using Absoft's FORTRAN 77, is
capable of taking advantage of most of the Amiga's ROM Kernel
routines. Include files for the Amiga's graphic, intuition, layers,
diskfonts, dos and exec functions are provided. However, the
FORTRAN's access to the Amiga's ROM Kernel routines is
somewhat incomplete; for example Absoft's include files for
access to Intuitions routine has no provision for the stlUctures
needed to control and use Intuition's gadgets. The Gadgets are
the graphical buttons (boolean), sliders (proportional), and
string objects that a program could employ to obtain user's
inputs.

This FORTRAN implementation does not directly access
the ROM Kernel Routines. Instead a routine is provided that is
capable of interfacing to the Amiga's ROM Kernel routines. This
routine is referred to as just amiga(). Usage of the amiga()
subroutine is as follows, as a subroutine

... ,
call amiga(ROM_Function_name, argl, arg2,
arg n)

or, as a function

result = amiga arg1,
arg2, ... , arg n) .

54 AC's TECH

An identical approach is employed by Absoft's Macintosh
version of the FORTRAN compiler where the use of an interfac­
ing routine called Toolbox() is employed (I am not sure if this
still holds in the latest release of Absoft's MacFORTRAN II).

Absoft provides examples that shows some of its ROM
Kernel interfacing capability with coded examples that generate
some graphics by calling the ROM Kernel using the amiga()
interface routine.

The Languages Implementation
The Absoft's FORTRAN language compiler for the Amiga

has been available for just about as long as the Amiga has been
available. The most currently available version, Version 2.3, is
functionally equivalent to the ANSI standard FORTRAN 77 with
some additional extensions that will be found in the proposed
FORTRAN 90 standard.

FORTRAN is a high level applications programming
language, especially suited for the scientific and engineering
areas. Contrast this with another often used Amiga language C
which is considered to be primarily a systems programming
languages. Users of the C language are insistent that it should
be considered as an all purpose language, insisting that it is
capable of being applied as a high level scientific and engineer­
ing applications language. The authors of the book Numerical
Recipes in C, Cambridge University Press, state in the preface
that the C language does not easily lend itself to numerical
analysis applications. In my opinion probably the language that
best qualifies as the best all purpose language on the Amiga for
both systems and applications programming would be Modula
2, but that is the subject for another time. For some of us who
work in the scientific and engineering application programming
areas FORTRAN remains the language of choice.

The purposes of this article are several, first to show the
Amiga programming community that Absoft's FORTRAN on the
Amiga is capable of prOViding access, although indirectly, to the
Amiga's advanced features as embodied in the ROM Kernel
routines, again without resorting to writing extra C or assembly
language code. Second, to extend the scope of the include files

DJComputers.cz

that is over and above even what the compiler's developers
even contemplated being done in terms of interfacing with the
Amiga ROM Kernel routines. Third, it is also hoped to educate
the programming community that structured programs can come
from this version of FORTRA:\, since a number of the aca­
demically trained programmers while in school where subject to
a great deal of anti-FORTRAN propaganda (in some cases
justified) and as a result are severely biased against this lan-
guage.

Most of the "bad" elements about FORTRAN were
primarily based on the older FORTRAN N. Although most
elements of FORTRAN N are still found in FORTRAN 77 (for
compatibility reasons), the current version provides a large
number of extensions that permit the programmer to employ
more acceptable programming methodology, such as those
language structures to minimize the need for the use of the
dreaded GOTO's. It even provides a mechanization for strong
data typing familiar to all who program in the modem high
level programming languages.

OH NO! No support for the C structures
FORTRAN 77 does not support anything that resembles

Cs structures or Pascal's RECORDS (although FORTRAN 90
does). But there is a work-around. It can be observed that a C's
data structure is nothing more than an array of data with mixed
data types associated to various pOltions of that array. In the
provided FORTRA:"!'s include files byte aJTays and equivalence
statements are used together to define something that is
functionally similar to C's data structures.

Figure 1 shows a portion of the Absoft's "graphic.inc"
include file. The left side defines the data type of a variable
name (note the variable names used are similar to the ones one
would find in the Amiga's C language include files). On the
right the FORTRAN's EQUNALENCE statement is used to place
the just typed variable name at the appropriate location in a
defined byte array. This process is repeated until all the
elements of a typical Amiga C structures are mapped into the
FORTRAN byte array.

In addition to the generation of the FORTRAN equiva­
lences of C's structures, Absoft's include files also provide
defines of commonly used Amiga parameters, symbolic names,
and information needed to access the ROM Kernel routines by
the FORTRA:\'s amiga() interface routine. Some of the defines
for ROM Kernel routines are shown in Figure 2.

Several FORTRAN include files are provided by Absoft to
allow the user to interface the FORTRAN to the ROM Kernel
routines, these are:

graph. inc
exec. inc
intuit.inc
layers. inc
dskfnt.inc
dos.inc

As mentioned Absoft does provide some demo programs
to show how to use the information in the include files with the
FORTRAN to interface with the ROM Kernel routines.

The Original Effort
The examples presented here arose from work being

done in rehosting signal processing software written in FOR­
TRAN that originally resided on a DEC's VAX computer. Initially,
the port was done in a straight forward manner with little effort
made to take advantage of any of the Amiga's interface features
outside of the CLl.

The program was completely rehosted and tested.
However, further work was pre-emptied by a change in work
assignment. Upon return to the this effort being a bit wiser, and
upon review of the software and its potential user base it was
decided that working from the CLl was adequate, but this ran
contrary to the Amiga's graphical interface philosophy. The
Amiga with its graphical user interface lead me to the conclu­
sion there was no reason why this software POlt should be tied
to the CLI just because it was the easiest to implement.

The challenge was to install in the FORTRAl'l source
code the capability to provide the user of that FORTRAN based
application program some user friendly interface elements.
From the nature of the inputs needed by the program, the form
of the desired means of input was identified. The identification
process required the use of various gadget types string, boolean,
and proportional. The use of such gadgets requires the pro­
grammer to employ one or more of the follOWing structures:

StringInfo
Prop Info
Gadget

In addition to the structures, the use of the appropriate
ROM Kernel routines are needed to either set up or control the
gadgets.

Examination of Absoft's FORTRAN's Intuition include files
Cintuit.inc) showed that the needed gadget structures were not
available. However, the information needed to access the ROM
Kernel routines in the same include file appeared to be almost
all there. Figure 3 lists the modifications or additions needed in
order for the FORTRAI'\ to have control of the gadgets.

The specific code segments needed to define the Gadget
structures in Absoft's intuit.inc files are shown in Figure 4.

Usage of the include files also showed a couple of the
references needed to access some of the ROM Kernel were
either absent or wrong. The intuitinc file's reference to the ROM
Kernel call EndRequest was in error. It must be changed from
z'00338314' to z'00328314'. The second find was that there was
no reference to the ActivateGadget in the intuitinc include file.
The following line must be also added to the intuitinc file.

integer ActivateGadget ; parameter
(ActivateGadget =z'06B2834D')

With this last change to the FORTRAN's intuit.inc file it is
now possible to write some code in FORTRAcl\' that permits the
user to use the Amiga's gadgets.

PREMIERE ISSUE 55

DJC
om
pu
ter
s.c
z

Figure One
A small portion of the FORTRAN's graph.inc include file is shown here. In particular, the Arealnfo and TextAttr structures are defined
here. Also shmvn are parameters that are typed and assigned preset values.

integer*2 AreaInfo (12)
integer*4 ai VctrTb1
integer*4 ai VctrPtr
integer*4 ai _FlagTbl
integer*4 ai _FlagPtr
integer*2 ai Count
integer*2 ai MaxCount
integer*2 ai FirstX
integer*2 ai FirstY

integer FRST DOT
integer ONE DOT
integer DBUFFER
integer AREAOUTLINE
integer NOCROSSFILL

* rp_DrawMode:

integer JAMl
integer JAM2
integer COMPLEMENT
integer INVERSEVID

integer TXSCALE

* - from "text.i" *
integer*1 TextAttr(8)

integer*4 ta Name
integer*2 ta YSize
integer*l ta Style
integer*l ta_Flags

integer FS NORMAL
integer FS UNDERLINED
integer FS BOLD
integer FS ITALIC
integer FS EXTENDED

integer FP ROMFONT
integer FP DISKFONT
integer FP REVPATH
integer FP TALLDOT
integer FP WIDEDOT
integer FP PROPORTIONAL
integer FP DESIGNED
integer FP REMOVED

56 AC's TECH

equivalence (AreaInfo(l) , ai_VctrTbl)
equivalence (AreaInfo(3), ai_VctrPtr)
equivalence (AreaInfo(5) , ai_FlagTbl)
equivalence (AreaInfo(7) , ai_FlagPtr)
equivalence (AreaInfo(9), ai_Count)
equivalence (AreaInfo(10),ai_MaxCount)
equivalence (AreaInfo(1l),ai_FirstX)
equivalence (AreaInfo(12),ai_FirstY)

parameter (FRST_DOT = z'OOOl')
parameter (ONE_DOT = z'0002')
parameter (DBUFFER = z'0004')
parameter (AREAOUTLINE z'0008')
parameter (NOCROSSFILL = z'0020')

parameter (JAMl = 0)
parameter (JAM2 = 1)
parameter (COMPLEMENT
parameter (INVERSEVID

parameter (TXSCALE 1)

2)
4)

equivalence (TextAttr(l),ta_Name)
equivalence (TextAttr(S),ta_YSize)
equivalence (TextAttr(7),ta_Style)
equivalence (TextAttr (8) ,ta _Flags)

parameter (FS_NORMAL = 0)
parameter (FS_UNDERLINED = 1)
parameter (FS_BOLD = 2)
parameter (FS _ITALIC = 4)
parameter (FS _EXTENDED = 8)

parameter (FP _ROMFONT= 1)
parameter (FP_DISKFONT= 2)
parameter (FP _REVP ATH= 4)
parameter (FP_TALLDOT= 8)
parameter (FP _ WIDEDOT= 16)
parameter (FP_PROPORTIONAL = 32)
parameter (FP_DESIGNED 64)
parameter (FP _ REMOVED= 128)

DJComputers.cz

Figure Two
This shows another portion of the FORTRAN graph.inc file, in this case the ROM Kemel function names are typed and

assigned numeric values. The value assigned each function name is utilized by the amiga() routine to interface to the cOITesponding
ROM Kemel routines.

function values for 'graphics. library'

integer GfxBase parameter
integer AndRegionRegion parameter
integer XorRegionRegion parameter
integer OrRegionRegion parameter
integer BltBitMapRastPort parameter
integer FreeGBuffers parameter
integer CopperListInit parameter
integer ScrollVPort parameter
integer GetRGB4 parameter
integer FreeColorMap parameter
integer GetColorMap parameter
integer FreeCprList parameter
integer XorRectRegion parameter
integer ClipBlit parameter
integer FreeCopList parameter
integer FreeVPortCopLists parameter
integer DisposeRegion parameter
integer ClearRegion parameter
integer Not Region parameter
integer NewRegion parameter
integer OrRectRegion parameter
integer AndRectRegion parameter
integer FreeRaster parameter

Figure Three
Modifications and additions made to the FORTRAN's
intuit.inc file.

(GfxBase
(AndRegionRegion
(XorRegionRegion
(OrRegionRegion
(BltBitMapRastPort
(FreeGBuffers
(CopperListInit
(ScrollVPort
(GetRGB4
(FreeColorMap
(GetColorMap
(FreeCprList
(XorRectRegion
(ClipBlit
(FreeCopList
(FreeVPortCopLists
(DisposeRegion
(ClearRegion
(NotRegion
(NewRegion
(OrRectRegion
(AndRectRegion
(FreeRaster

Added the following Intuition Structures to Absoft's intuitinc
include file:

StringInfo
Prop Info
Gadget

Modified the information needed to access the Intuition's
EndRequest routine (See Figure 2).

Added the routine ActivateGadget function to the
Intuition's include file function list.

=z' 00000200')
=z' 00338268')
=z' 00338267')
=z' 00338266')
=z' 000FF265')
=z'04328264')
=z' 00208263')
=z' 00008262')
=z' 00218261')
=z' 00018260')
=z' 0001025F')
=z'0001825E')
=z' 0013825D')
=z'000DF25C')
=z' 0001825B')
=z' 0000825A')
=z' 00018259')
=z' 00018258')
=z' 00018257')
=z' 00000256')
=z' 00338255')
=z'00338254')
=z'04618253')

PREMIERE ISSUE 57

. /

DJC
om
pu
ter
s.c
z

Figure Four
This is a listing of the FORTRAN templates (equivalent to C's structures) and parameter definitions that must be added to

Absoft's FORTRAN intuit.inc file. Once these code segments are added the Amiga FORTRAN user is capable of accessing Intuition's
string, boolean, and propOltional gadgets.

Stringlnfo structure

integer*l Stringlnfo (36)

integer*4 si Buffer
integer*4 si UndoBuffer
integer*2 si BufferPos
integer*2 si MaxChars
integer*2 si _DispPos
integer*2 si UndoPos
integer*2 si NumChars
integer*2 si_DispCount
integer*2 si CLeft
integer*2 si _CTop
integer*4 si _Layerptr
integer*4 si_Longlnt
integer*4 si _AltKeyMap

Gadget structure

integer*l Gadget (44)

integer*4 gg_NextGadget
integer*2 gg_LeftEdge
integer*2 gg_TopEdge
integer*2 gg_Width
integer*2 gg_Height
integer*2 gg_Flags
integer*2 gg_Act ivat ion
integer*2 gg_GadgetType
integer*4 gg_GadgetRender
integer*4 gg_SelectRender
integer*4 gg_GadgetText
integer*4 gg_MutualExclude
integer*4 gg_SpecialInfo
integer*2 gg_GadgetID
integer*4 gg_UserData

58 AC's TECH

equivalence (Stringlnfo(l),si_Buffer)
equivalence (Stringlnfo(5),si_UndoBuffer)
equivalence (Stringlnfo(9),si_BufferPos)
equivalence (Stringlnfo(ll),si_MaxChars)
equivalence (Stringlnfo(13),si_DispPos)
equivalence (Stringlnfo(l5),si_UndoPos)
equivalence (Stringlnfo(17),si_NumChars)
equivalence (Stringlnfo(19),si_DispCount)
equivalence (Stringlnfo(21),si_CLeft)
equivalence (Stringlnfo(23),si_CTop)
equivalence (Stringlnfo(25),si_LayerPtr)
equivalence (Stringlnfo(29),si_Longlnt)
equivalence (Stringlnfo(33),si_AltKeyMap)

equivalence (Gadget (1) , gg_NextGadget)
equivalence (Gadget (5) , gg_LeftEdge)
equivalence (Gadget (7) , gg_TopEdge)
equivalence (Gadget (9) , gg Width)
equivalence (Gadget (11) , gg_Height)
equivalence (Gadget(13), gg_Flags)
equivalence (Gadget(l5), gg_Activation)
equivalence (Gadget(17), gg_GadgetType)
equivalence (Gadget(19), gg_GadgetRender)
equivalence (Gadget(23), gg_SelectRender)
equivalence (Gadget(27), gg_GadgetText)
equivalence (Gadget (31) , gg_MutualExclude)
equivalence (Gadget (35) , gg_Speciallnfo)
equivalence (Gadget(39), gg_GadgetID)
equivalence (Gadget(41), gg_UserData)

DJComputers.cz

Gadget flags

integer GADGHIGHBITS parameter (GADGHIGHBITS = z'0003')
integer GADGHCOMP parameter (GADGHCOMP z' 0000')
integer GADGHBOX parameter (GADGHBOX z'OOOl')
integer GADGHIMJI.GE parameter (GADGHIMAGE z'0002')
integer GADGHNONE parameter (GflJ)GHNONE z'0003')
integer GADGIMAGE parameter (GADGIMAGE z'0004')
integer GRELBOTTOM parameter (GRELBOTTOM z'0008')
integer GRELRIGHT parameter (GRELRIGHT z' 0010')
integer GRELWIDTH parameter (GRELWIDTH z'0020')
integer GRELHEIGHT parameter (GRELHEIGHT z' 0040')
integer SELECTED parameter (SELECTED z'0080')
integer GADGDISABLED parameter (GADGDISABLED = z'0100')
integer RELVERIFY parameter (RELVERIFY z'OOOl')
integer GADGIMMEDIATE parameter (GADGIMMEDIATE= z'0002')
integer END GADGET parameter (ENDGADGET z'0004')
integer FOLLOWMOUSE parameter (FOLLOWMOUSE z'0008')
integer RIGHTBORDER parameter (RIGHTBORDER z'0010')
integer LEFTBORDER parameter (LEFTBORDER z'0020')
integer TOP BORDER parameter (TOPBORDER z'0040')
integer BOTTOMBORDER parameter (BOTTOMBORDER = z' 0080')
integer TOGGLESELECT parameter (TOGGLESELECT = z'0100')
integer STRINGCENTER parameter (STRINGCENTER = z'0200')
integer STRINGRIGHT parameter (STRINGRIGHT z'0400')
integer LONGINT parameter (LONGINT z'0800')
integer ALTKEYMAP parameter (ALTKEYMAP z'1000')

Gadget types

integer GADGETTYPE parameter (GADGETTYPE z'fcOO')
integer SYSGADGET parameter (SYSGADGET z'8000')
integer SCRGADGET parameter (SCRGADGET z'4000')
integer GZZGADGET parameter (GZZGADGET z'2000')
integer REQGADGET parameter (REQGADGET z'1000')
integer SIZING parameter (SIZING z'0010')
integer WDRAGGING parameter (WDRAGGING z'0020')
integer SDRAGGING parameter (SDRAGGING z'0030')
integer WUPFRONT parameter (WUPFRONT z'0040')
integer SUP FRONT parameter (SUPFRONT z'0050')
integer WDOWNBACK parameter (WDOWNBACK z'0060')
integer SDOWNBACK parameter (SDOWNBACK z'0070')
integer CLOSE parameter (CLOSE z'0080')
integer BOOLGADGET parameter (BOOLGADGET z' 0001')
integer GADGETOO02 parameter (GADGETOO02 z'0002')
integer PROP GADGET parameter (PROP GADGET z' 0003')
integer STRGFJ)GET parameter (STRGADGET z'0004')

PREMIERE ISSUE 59

DJC
om
pu
ter
s.c
z

Proplnfo structure

integer PropInfo(22)

integer*2 pi_Flags
integer*2 pi_HorizPot
integer*2 pi_VertPot
integer*2 pi_HorizBody
integer*2 pi_VertBody
integer*2 pi_CWidth
integer*2 pi_CHeight
integer*2 pi_HPotRes
integer*2 pi_VPotRes
integer*2 pi_LeftBorder
integer*2 pi_TopBorder

Proplnfo flags

equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence

(PropInfo (1) , pi_Flags)
(PropInfo (3), pi_HorizPot)
(PropInfo (5) , pi_VertPot)
(PropInfo (7) , pi_HorizBody)
(PropInfo (9), pi _ VertBody)
(PropInfo (11) , pi_CWidth)
(PropInfo (13) , pi_CHeight)
(PropInfo (15) , pi_HPotRes)
(PropInfo (17) , pi _ VPotRes)
(PropInfo (19) , pi_LeftBorder)
(PropInfo (21) , pi_TopBorder)

integer AUTOKNOB parameter (AUTOKNOB z'OOOl')
integer FREEHORIZ parameter (FREEHORIZ z'0002')
integer FREEVERT parameter (FREEVERT z'0004')
integer PROPBORDERLESS parameter (PROPBORDERLESS z'0008')
integer KNOBHIT parameter (KNOBHIT z'0100')
integer KNOBMIN parameter (KNOBMIN z'0006')
integer KNOBVMIN parameter (KNOBVMIN z'0004')
integer MAXBODY parameter (MAXBODY z'ffff')
integer MAXPOT parameter (MAXPOT z'ffff')

An Example: A Proportional Gadget from
FORTRAN code (On Disk!)

DriveHam is simple. It sets up the Amiga NewScreen
structure, and then proceeds to call OpenScreen using the
amiga() routine. It is from this newly opened screen that the
window containing the proportional gadget is found. The
proportional gadget is set up and used by the HamReq
subroutine.

The HamReq subroutine first allocates some chip
memory for the slider knob image of the proportional gadget.
This is achieved with a call to the AllocMem routine and a
request is made for 200 bytes of CHIP memory. The AllocMem
routine returns the base address of the memory allocated. The
slider's knob image as defined in the KnobGraphic array is
moved into the just allocated chip memory. This step uses the
Absoft's FORTRAN word function to place the arrays data at the
desired me mOlY location. The next step sets up AKnobImage
array (or data s;:ructure) by employing the Image template as
defined in the intuiLinc file. This is followed by setting up the
APropInfo array from the PropInfo template.

This defines the proportional gadgets attributes. An
IntuiText stlUcture is next defined into the Itextl array. The
Gadgetl array is next defined from the Gadget template again
defined in the intuiUnc file. Again the nomenclature used here
is nearly identical to that used in the Amiga's C stlucture
definitions. A window structure called FirstNewWindow is then
defined using the NewW'indow template, All the needed
stlUctures are now defined.

60 AC's TECH

A call to OpenLibrary is done to open the Amiga's
Intuition.library. As required by the operating system the strings
sent to the operating system must be zero (0) terminated. A
check is made to determine if the libralY has been opened. The
NewWindow template is used to set up the FirstNewWindow
structure. To the FirstNewWindow structure is attached the
proportional gadget structure Gadgetl by passing the Gadgetl
address pointer nW_FirstGdgt. A call is made to the
OpenWindow routine to open the window. If the first window
cannot be opened the opened library is closed and the program
is halted retuming control to the user.

Absoft also provides several routines that are not found
in the standard FORTRAN, the amiga() routine has already
been discussed. The other provided routine is 10c() which
returns a pointer to a FORTRi\:\ variable. Examination of the
code described thus far shows some applications of the loc()
routine. Absolute memolY addressing is also supported by the
FORTRAt"'J compiler with three functions byte(), word(), and
long() word memOlY addreSSing, The code description that
follows will show application of these special intrinsic functions.

The windows Raster port pointer (RPonPtr) is derived
from the memory offset wd_RPolt and the window's
First\'Vindow base pointer. Here the absolute memory address­
ing function longe) is employed. The SetAPen function is called
to set the pen color. The variable HAIVCFACTOR is converted to
longtemp which ranges from 0 to FFFF. The floating point
variable HA.c\CF ACTOR is converted to string ham_temp based
on a format description. ModifyProp() is called to set the

DJComputers.cz

• Enhanced, compiled BASIC • Animation & Icons • Integrated Editor Environment
• Extensive control structures • IFF Picture Reader • 0201030 Support

• True Recursive Subprograms • Random Access Files • I FF Sound Player
• FAST Real Computations • F-Basic Linker • Built In Complex and Matrices

• Easy To Use For Beginners • Improved Graphics & Sound • Object Oriented Programs

• Can't Be Outgrown • RECORD Structures and • Compatible with 500, 1000,
By Experts Pointers 2000, 2500, or 3000

F-BASICTMWith User's Manual & Sample Programs Disk - Only $99.95
F-BASIC™With Complete Source Level DeBugger - Only $159.95

F_BASlelM Is Available Only From:
DELPHI NOETIC SYSTEMS, INC.

Post Office Box 7722 • Rapid City, SD 57709-7722
Send Check or Money Order, or Write For Info - Credit Card or CO. D. Call (605) 348-0791

F·BASIC is a registered trademark of DNS, Inc.
AMIGA is Q registered trademark of Commodore/AMIGA, Inc.

Circle 199 on Reader Service card.

position of the slider object in the proportional gadget. The
value of HAl'vCFACTOR variable is placed via the intuitext
facility into the window. The do-while loop that follows
monitors the messages that are received by the window through
its user's port.

A provision is made to suspend any processing until
some form of input is directed to the window, this is achieved
calling the Amiga's Wait routine. The Wait routine suspends this
process until it is determined that some input has been directed
to this window, this allows the FORTRAN based process to be
more cooperative in Amiga's multi tasking environment. When
some mouse activity is detected that is in accord with the
windows pre-defined IDCMPFlags the process is activated and
the type of message (Message Class) is ascertained.

For this example only two message classes are looked for
GAD GETUP and CLOSEWINDOW. The GADGETUP message
indicates that the window's proportional gadget has been
manipulated. The gadget's positional change is taken from the
AProplnfo structure convelted to a string and displayed as some
IntuiText. A CLOSEWINDOW message class is activated by
clicking on the window's close gadget. Upon detection the
RemoveGadget system routine is called to delete the gadget
from the window. Followed by a call to the Amiga systems

Close\\lindow routines to close the window and finally the
intuition.librarv is closed for this process. The do-while loop
variable Waito'n is changed to a false condition allowing the
loop to be exited.

The final steps entail setting the to the
most recent values as ascertained from the last proportional
gadget setting. The bit of chip me mOlY allocated by a call
AllocMem is de allocated by call to the system's FreeMem
routine.

The executable form of the program described is called
TestProp. Access from the workbench is achieved by clicking
the TestProp_Demo icon. The Source code is provided in
Prop_Source directory. Additional examples of FORTRAN based
code are also provided; click on the Fills_Demo and
Jupiter_Moons icons. The JupitecMoons is a Jupiter Moons
simulation written in FORTRAN. Fills_Demo is an example of
how to access the Amiga's areafill routines.

There, in a relatively large nutshell, is an example of how
to interface one's FORTRAN code to the Amiga's Intuition to
take advantage of its proportional gadgets. Future articles will
describe the interfacing of FORTRAN source to other Intuition
gadgets, string and boolean.

PREMIERE ISSUE 61

DJC
om
pu
ter
s.c
z

FastBoot
A Super BootBlock

Creating a bootable,
recoverable, RAM disk

by Dan Babcock

What is it?
FastBoot is a bootblock that quickly loads an entire

disk into memory, creates a RAlVl disk, and boots from that RAM
disk. The RA.M disk that FastBoot creates is recoverable and
autobooting (it requires Kickstart 1.3 or later). It is equivalent to
mounting a floppy-sized RAD: (more properly known as
ramdrive.device), using DiskCopy to fill RAD:, ejecting the
floppy, and resetting the machine. Because FastBoot resides
solely on the bootblock, however, all these functions require no
usable disk space-and proceed as quickly as possible (no
endless disk grinding!). FastBoot has other advantages too: It
supports two popular Amiga 1000 hacks (512K of piggyback
RAM at $80,000 and Kickstart-in-EPROM with 256K of RAM at
$F80,000) and it allocates its memolY in four 220K chunks
(RAD:, by contrast, allocates a single contiguous 880K chunk);
allocating in four chunks permits contiguous memory regions as
small as 256K to be utilized (such as results from the Kickstart­
in-EPROM hack). FastBoot is also fleXible; it may be bypassed
completely by pressing the left mouse buttop (p011 1) during
boot-up and, once installed, may be de installed by pressing the
"fire" button of a joystick or mouse in port 2. Finally, FastBoot is
convenient; there is no need to add files to the disk and edit
startup-sequences and mountlists, making it pa11icularly handy
for speeding up games or demos with heavy disk access
(assuming they don't access the floppy hardware directly).

How to use it
The source code listing was designed to be assembled

with Macr068. If you lack Macro68 you'll find the binary on the
accompanying disk. Once you have the 1006 byte file in hand,
all that remains to be done is to install it in the bootblock of
your disk(s). For this task I recommend DBInstall, a bootblock
manipulator written by Dr. Bit, a Danish assembly language
programmer. Again, DBInstall is found on the disk that comes
with ACs Tech. To install FastBoot on a disk in drive dfO:, type:

OBI write Ufastboot" dfO:

62 AC's TECH

There are just a few points to keep in mind when
using FastBoot. First of all, it requires at least 1.25MB of memory
to be useful. In fact, FastBoot checks how much memOlY is
available: if 1MB (note that this value may be easily changed in
the source code) or less is available, the disk will boot normally,
bypassing the special FastBoot code. If that memolY require­
ment is too much for your system, FastBoot may be modified
rather easily to SUpp011 440K RA..1\.1 disks. Another requirement is
Kickstart 1.3 or later. If an older Kickstart is in use, FastBoot
refuses to do its magic, and the disk boots normally.

As mentioned earlier, FastBoot may be bypassed by
pressing the left mouse button during boot-up. Once the disk is
loaded into memory, the RAlVl disk that was created will
become the boot disk. To refer to the RAM disk, use the
designation "WE:" (this is analogous to names such as "DFO:"
and "DFl:"). The device name (analogous to "trackdisk.device")
is also "WE".

The contents of the RAM disk are preserved when the
system is reset and, in addition, AmigaDOS will boot from the
RAM disk after a keyboard reset if there is no floppy in DFO:.
Only one FastBoot RAM disk in memory at one time is sup­
ported. If FastBoot detects that it has been run before, a disk
with the FastBoot bootblock will boot normally rather than be
loaded into memory. To kick out the FastBoot RAM disk (and
also RAD: if it is in memory), hold down the "fire" button of a
mouse or joystick in port 2 after resetting. POlt 1 was not used
for this purpose to avoid a conflict with the boot selection
screen in Kickstart 2.0.

Technical details
Perhaps the most interesting aspect of FastBoot is that

it Oike ramdrive.device on the 1.3 Workbench) is recoverable
and bootable. This process revolves around two pointers
present in ExecBase since version 1.2: KickMemPtr
(ExecBase+$222) and KickTagPtr (ExecBase+$226).

KickMemPtr points to a list a MemLists. During startup,
Exec tries to allocate the memory defined in the MemLists with
AllocAbs, which attempts to mark a region of memory at an
absolute address as unavailable. It succeeds if the memory has
not already been allocated. A recoverable RAM disk can use
Kic!u\1emPtr to ensure that its memory is not stomped on after a
reset. There is one catch, though: at the time Exec calls
AllocAbs, memory expansion boards have not been configured,
and Exec is unaware of them. The only me mOlY known to Exec
at this time is Chip memory and the special $COO,OOO memOlY,
which means, essentially, that only Chip memory may be
allocated using KickMemPtr.

DJComputers.cz

KickTagPtr points to a table with the following format:

pointer to a romtag
pointer to a romtag

o (end of table) or another KickTagPtr, identified by setting
the MSB (most significant bit)

A romtag is simply a table that both identifies and
describes a device driver or library (often simply refen'ed to as a
module).If the AllocAbs calls made previously (when processing
KickMemPtr) succeeded, then Exec gathers these romtags in a
list, along with the real romtags (those that actually exit in
ROM). Note that they are sorted according to the priority field of
the romtags. After that, Exec calls InitCode, which calls
InitResident for each module, which, among other things, calls
an initialization routine in the module. Note that there is a
checksum of the lists/tables associated with these two pointers.
When a program alters this information, it must caU the Exec
routine SumKickData and store the result (in dO.1) in
KickCheckSum (ExecBase+$22A).

The FastBoot code resides in Chip RAM and uses the
KickMemPtr mechanism to protect itself from being overwritten.
The actual RAM disk can't be expected to fit into chip RAM,
however. The solution: The RAM disk data is recovered (by
calling AllocAbs) in the initialization routine of the driver.
Because we've chosen a priority for the driver lower than the
priority of the expansion. library, RA.l'yf cards have already been
configured and all memory is available. It turns out that this
procedme is a bit trickier than it first appears, however. The
problem is that we are making multiple calls to AllocAbs. Each
AllocAbs call may consume memory if the memory list needs to
be expanded but, since the other me mOlY blocks are as yet
unknown to the OS, they may be ovelwritten. Fortunately, there
is a simple solution: Provide an eight-byte buffer area on both
sides of a memory chunk.

Once the RAM disk memory has been recovered,
FastBoot needs to inform the OS that it wants to autoboot. This
is accomplished by enqueueing a BootNode structure on the
eb_MountList of the expansion. library. To make a long story
short, the follOWing code and structures are all you need to
know in order to autoboot.

Typical autoboot code
Please note that the following code assumes that the

driver (called "hackdisk.device" in this example) has already
been initialized. Unless this happens automatically for some
reason (for example, if it is hooked into KickTagPtr) you should
call InitResident first. This code uses the new 68000 syntax
developed by Motorola to support the added instructions and
addressing modes of the 68020 and above.

movea.l
lea
moveq
SYS
tst.l
beq.b
movea.l
lea
SYS
lea

(4) .w,a6
(expansion,pc),al
#34,dO ;insist on kickstart 1.3 or later
OpenLibrary
dO
WrongVersion
dO,a6
(parmpacket,pc),aO

MakeDosNode
(eb_MountList,a6),aO ;pointer to

;eb_MountList
movea.1 (4) .w,a6

lea (BootNode,pc),a1
move. 1 dO, (16,a1) store DosNode pointer in

BootNode
structure

SYS Enqueue add BootNode to
eb_MountList

WrongVersion:
rts

expansion: dc.b 'expansion. library' ,0
even

Autoboot structures

BootNode:
dc.l

dc.1

dc.b
dc.b
dc.l
dc.w
dc.1

ConfigDev:
dcb.b
dc.b
dcb.b
dc.1

DiagArea:
dc.b
dcb.b
dc.w

The BootPoint

BootPoint:

°
°
16
priority
ConfigDev

;linkage pointer - filled
iEnqueue
;linkage pointer - filled
; Enqueue
iconstant - must be here

o ; flags - not too important

in by

in by

DosNode ;offset 16 - filled in by above code

16,0 ; ignored
16 ;constant - must be here
11,0 ; ignored
DiagArea

16 ;constant - must be here
5,0 ; ignored
BootPoint-DiagArea ;This is UNSIGNED.

;code MUST lie after the DiagArea,
;not before!

;Standard boot code
movea.1 (4) .w,a6
lea (DosName,pc),a1
SYS FindResident
movea.l dO,aO
movea.1 ($16,aO),aO
jmp (aO)

DosName: dc.b 'dos.library' ,0
even

parmpacket:
;values for a

dc.l
dc.l
dc.l
dc.l

floppy-like device are given as an example
DosName

(512/4)

dc.l

dc.l

dc.l
dc.l
dc.l

dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l

ExecName

° °
11

128

° 2
1

11
2

° ° ° 79
5

dc.b 'DF4:',0
even

;unit number (not very important)
;OpenDevice flags (not used in this
;case)
;upper bound of this table, in
;longwords
;number of longwords in a block

; sector origin (never used)
inumber of surfaces
;sectors per logical block (cluster
:8ize) - never
;used
isectors per track
;reserved blocks - 2 boot blocks
inever used
iinterleave
:lower cylinder
;upper cylinder
:number of buffers

ExecNarne: dc.b 'hackdisk.device',O
even

PREMIERE ISSUE 63

DJC
om
pu
ter
s.c
z

The RAM disk driver
One of the most remarkable aspects of FastBoot is that

it contains a complete device driver embedded in it-and, in
fact, the device driver constitutes a rather small percentage of
FastBoot's 1,006 bytes. Due to the size and complexity of the
sample device driver found in the Amiga ROM Kernel Reference
Manual, one might believe that device drivers are difficult to
understand and write. Examining the device driver in FastBoot
is an excellent way to learn the basic form and function of a
device driver under Exec without being bogged down with
unneccessalY detail. The reason why the sample driver in the
ROM Kernel Reference Manual is so complicated is that it
pem1its reentrant operation (which is required by Exec) despite
controlling nonsharable hardware (although the sample driver
functions as a RAM disk, and thus doesn't need that capability).

The RAM disk
that FastBoot creates

is recoverable
and autobooting

(it requires Kickstart 1.3 or later).

That's confuSing, so I'll tly to clarify. Consider two tasks that
both attempt to read from a floppy drive. One of the tasks calls
DolO, which causes Exec to call the driver's BeginIO ently
point. The drive dispatches the request to its read routine, and
starts programming the floppy controller registers. At the same
time, the other task issues a read request. Once again, the driver
starts programming the floppy controller registers. Chaos ensues
because the other task is doing the same thing. It's clear that the
floppy driver must queue and arbitrate these requests. Hence,
the added complexity.

None of that is required for a RAM disk. Any number
of accesses to the RAM disk may occur simultaneously with no
need for queuing requests. Admittedly, there is one possible
catch. If one task reads a sector at the same time another task is
writing a sector, there may be confusion. However, proper file
system design should not permit such a case to arise.

Miscellaneous Notes
There are a few other aspects of FastBoot wolthy of

commentalY. For one, note that FastBoot includes a built-in
Exec bug fix--eqivilent to the "r" option of SetPatch-that is
called via the ColdCapture vector. Since we're on the topic of
Exec "capture" vectors, I'd like to digress and describe them.
Because of their popular use in viruses, it's nice to know what
they are.

64 AC's TECH

ColdCapture: ExecBase+42. This vector is called (with a JMP)
very early in the bootup routine. The return address in in AS.

CoolCapture: ExecBase+46. This vector is called (with a JSR) just
before InitCode is called.

WarmCapture: ExecBase+50. This vector is called (with a JSR)
right after InitCode is called.

Another notable point is that there is a quirk in the
autoboot process. The floppy drive has a priority of five. If a
device has a priority lower than five (please note that I'm
referring to the priority field of the BootNode, not of the device
driver per se), the floppy will be checked first, then Of a floppy
is not present) AmigaDOS will boot from the next highest
priority autoboot device. It is sometimes desirable to bypass the
floppy check entirely. Take FastBoot, for instance. After
FastBoot loads the floppy into memory, we want AmigaDOS to
boot from the copy in RAM, not the disk. To accomplish that,
one is supposed to specify a priority greater than five.
Unfoltuntely (here's the quirk I promised you) it doesn't work
quite right. It does indeed bypass the floppy check, but then
there are two DFO: devices in the device list.. .clearly an unstable
situation. FastBoot includes a hack that fixes this feature!bug.
Strangely enough, the same technique does not work at all
under 2.0, so FastBoot takes a different approach in that case
(resetting the machine).

One other point worth noting is that AmigaDOS
crashes if two volumes (i.e., disks) have the same name and
creation date. Accordingly, it is not'sufficient to simply copy a
disk into memOlY verbatum--either the name or date must be
changed. By far the simplest method of handling this require­
ment is to increment the "tick" value. A tick is, according to the
AmigaDOS Technical Reference Manual, a fiftieth of a second.
It's too small for most to be concerned with, but it is still quite
sufficient for AmigaDOS to use to distinguish between two
volumes with the same name. An added benefit of changing the
creation time (as opposed to the volume name, for instance) is
that the new checksum (it seems like everything has a
checksum, doesn't it?) is easy to calculate: just subtract one.

The End ... for now
By far the hardest part of writing FastBoot was dealing

with the extremely limited space available-just 1012 bytes
(though the current version of FastBoot only uses 1006 bytes).
When confronted with such limitations, it's tempting to take
shortcuts. For example, code size could have been reduced
conSiderably by relying on certain absolute addresses in the
Kickstalt 1.3 ROM, but I wanted the program to be compatible
with Kickstart 2.0 and beyond. I had to rewrite the code many
times to pack it into the limited space. I'm sure you'll find many
of your favorite optimizations in the source code listing. High­
quality assembly language programming is not obsolete!

DJComputers.cz

Recently, we were ordered by
u.s. military officials to explain to
their complete satisfaction just
what a SuperSub is (as we all
know, it's the best subscription
deal around for Amiga users,
since it includes both Amazing
Computing andAC's GUIDE).

Then, a prominent Congressman
wired to ask us if we would testify
before a top-secret subcommittee
as to whether or not we can pro­
duce a single prototype SuperSub
for less than $500 million (is this
guy kidding? - a one-year
SuperSub costs just $36 - and we
can produce one for anybody 0.

Finally, a gentleman called us
from Kennebunkport and told us
to read his lips, but we told him
we couldn't, because we don't
have a picturephone.

And then he ordered a SuperSub.

AC's SuperSub -
It's Right For You!
call 1-800-345-3360

List of Advertisers

Please use a Reader service card to contact those

advertisers who have sparked your interest. Adver­

tisers want to hear from you. This is the best way

they have of determining the Amiga community's

interests and needs. Take a moment now to con­

tact the companies with products you want to lean

more about. And, if you decide to contact a

advertiser directly, please tell them you saw them in

ACs lECH/AMIGA

Reader Service
Advertiser Page Number

Absoft 15 166

Benetech Electronic Supply 67 128

Black Belt Systems 31 118

Boone Technologies 67 194

Creative Focus 81 132

Delphi Noetic 61 199

Delta Research 43 197

DKB Software 78 159

GT Devices 32 109

ICD CIII 123

Interactive Video Systems CII 140

MAS.T. 3 160

Meggldo Enterprises 69 144

Memory Location,The 79 107

Memory Location,The 69 186

Pre'spect Technics Inc CIV 151

Puzzle Factory,The 5 168

SAS Institute Inc 53 146

The Krueger Company 14 116

Vidial Visual Media Tools 42 157

Virtual Reality Labs 80 131

DJC
om
pu
ter
s.c
z

:***
FastBoot: A Super Boot Block!

Written by Dan Babcock, January 1990
Copyright (C) 1990 by Dan Babcock

It's OK to copy this as long as no money is involved.
(Commercial developers should contact me.)

;1 may be reached on People/Link (my ID is DANBABCOCK) or Internet
; (I read comp.sys.amiga.tech).
i*** ******

aseg
objfile
super

iernit raw code
'fastboot'
;suppress warnings about supervisor mode

;This source was assembled with Macro68, the best assembler ever!

User-set table parameters ------
MemoryRequirement equ $100000
BootPriority equ 0 ;ranges from -128 to 127

RamPtr equ 1096 ;this refers to the area of memory 1096
;bytes after the bootblock start that holds
;pointers to the 4 220K memory blocks

;These four addresses are used to refer to the four
;memory block pointers individually.
mem1 equ RamPtr
mem2
mem3
mem4

equ
equ
equ

RamPtr+4
RamPtr+8
RamPtr+12

KickMemPtrData equ 1072 ;this doesn't refer to KickMemPtr
;se, but to the data that KickMemPtr
;will point to

;Start of main code
FastBoot:
;* Read in all 880K of the disk *

movem.l dO-d7/aO-a6,-(sp) ;save all registers
move.l al,-(sp) ;save 10 request block pointer

iuse

;Check to see if FASTBOOT has already been run
lea (Name,pe),a1
SYS FindResident
tst.l dO
bne seminormalboot ;if present, boot normally

;Check checkstart version
bsr CheckVersion
bcs.b squeeze ;if lower than 1.3, boot normally

bsr addmem1 ;add A1000 memory if necessary

;Check fire button (usually left mouse button) in the left
;port. If the button is pressed, skip FASTBOOT and boot
; normally.

btst #6, ($bfe001)
beq.b squeeze ;go if pressed

;Check available memory - only perform the fastboot if the
;user has more than MemoryRequirement bytes free. Commercial developers
; (and others) may want to customize this value to match
;the memory requirements of the program.

moveq fO,dl ;no special attributes
SYS AvailMem
cmp.l
bcs

#MemoryRequirement,dO ;minimum free memory required
seminormalboot ;go if dO.l (free mem) <

;#MemoryRequirement

;Allocate 1,124 bytes of CHIP+CLEAR memory and copy
;the driver (about 1,012 bytes) into it.

move. 1 #1124,d7 ;size of driver including scratch area
move. 1 d7, dO
move.l #MEMF_CHIP+MEMF_CLEAR,d1 ;*MUST* be chip RAM
SYS AllocMem
movea.l dO,a3 ;a3 is a pointer to the copy of the driver

66 AC's TECH

DJComputers.cz

movea.l
lea
move.w

copydriver:
move.b
subq.w
bne.b

dO .. a4
(FastBoot,pc),a5
liEndCode, dO

(a5)+, (a4)+
n,dO
copydriver

;Relocate bootblock
lea (relocinfo,pc},aO ;get pointer to relocation table
move.l a3,dl ; a3 is a pointer to the copy of the dri ver

relocloop:
move.w
beq.b
add.l

bra.b
donewithreloc:

jmp

newaddress:

(aO) +, dO
donewithreloc
d1, (0, a3, dO .w)

relocloop

(newaddress,a3)

;a zero reloc offset terminates
;add the base address to the
iabsolute references to relocate

;execute from now on from the allocated
imemary space

;Allocate four 220K chunks of memory for the big buffer
moveq li$16,d4
rol.l li8,d4 ;512*11 trackdisk buffer
lea (RarnPtr+FastBoot,pc),a4
movea . l a4,a3

;note that this is 220K+16 - the 16 provides seperatio n of
;the blocks - ext=emely important!

move. 1 li225296,d5
moveq #3,d6

allocloop:
move. 1 d5,dO

#0,d1
Allo cMem
dO, (a3)

squeeze:

moveq
SYS
move. 1

beq
addq.l

dbra

ina special requirements
;allocate 220K

seminormalboot ;not enough memory, so boot normally
#8, (a3)+ ;adjust so that the first 8 bytes are not

;used by the driver
d6,allocloop

;Allocate 11 sector chip mem buffer for trackdisk 10
move. 1 d4,dO
moveq liMEMF_CHIP,d1
SYS AllocMem ;Allocate a 5,632 byte chip mem buffer
movea.l

moveq
moveq
movea . l
rnove.l

dO,a5

liO,d6
ji3, d3
a4,a3

;offset
;outer loop counter

(sp)+,d2 ;get back 10 request pointer

;The disk read loop follows.

;d2 - 10 request block pointer
;d3 - outer loop counter
;d4 - 5632 (constant)
;d5 - inner loop counter
;d6 - offset
;a1 - 10 request block pointer (destroyed after each 0010)
;a2 - active pointer to mem block
;a3 - active pointer to RAMPTR
;a4 - static pointer to RarnPtr
;a5 - pointer to chip buf

outerreadloop:
movea.l (a3)+,a2
moveq t3 9, d5

rnainreadloop:
movea.l d2,a1
move . l a5, (10_DATA,a1)
move.l d4, (10 LENGTH,a1)
move.l d6, (lO-OFFSET,al)
move.w #CMD_READ, (lO_COMMAND,al)

SYS DoIO
tst.l dO
bne warmboot

move. 1 d4,dO
movea.l a5,aO

read 11 sect ors
check error return
reboot if an error occured

r 1
ID-SUBS I
9-15-19-2 3-2 5-37 . I

DINS .••. •.. .
3-4-5-6-7-8-13-14 I

..• ·.·. MINI DINS I
3-4-5-6-7-8-9

. i I
I

Switchhoxes, Fans, Spray Chemicals I
IC Sockets , Gender Changers, & more ... I

CALL FOR;Utt CATALOG I
I
I

HQLTQM:CITY, TX 76117
I
I L ___________ .J

Circle 128 on Reader Service card.

DATA o ACQUISITION
SYSTEM

FOR AMIGA
.0

D

45878D -5
TlIoIE !SEC.! -

0 .0
LOW COST SYSTEM FOR MONI TORING EVENTS
WITH YOUR AMIGA. MEASURE. GRAPHICALLY
DISPLAY AND RECORD TEMPERATURE. PRES-
SURE. LIGHT I NTENS I TY. ETC. NO SEPARATE
POWER SUPPLY REOUIRED. CONNECTS TO SEC-
OND GAME PORT DOES NOT INTERFERE WITH
PARALLEL OR SERIAL PORT OPERATION.
MUL TIT ASK I NG SOFTWARE RUNS FROM WORK-
BENCH. COMPLETE HARDWARE AND SOFTWARE
SYSTEMS ST ART I NG AT $792Q TH I S PRODUCT
SHOWS THE TRUE POWER OF THE AM I GA.

BOONE TECHNOLOG I ES
POBOX 15052, RICHMOND, VA 23227

WR I TE FOR I NFORMAT I ON AND DEMO DISK

Circle 194 on Reader Service card .

PREMIERE ISSUE 67

DJC
om
pu
ter
s.c
z

copytobigbuf:
move .. 1
subq.l
bne.b
add.l
dbra
dbra

(aO) +, (a2) +
#4,dO
copytobigbuf
d4,d6
d5,mainreadloop
d3,outerreadloop

;Change the volume creation time of the ram disk. If two
:devices have the same volume name AND creation time,
;AmigaDOS crashes.

movea.l
addq.l
subq.l

(B,a4),aO
#1, (492,aO)
#1, (20,aO)

;modify creation time (very slightly!)
;fix checksum

;Deallocate chip memory buffer
movea.l a5,al
move.l d4,dO
SYS FreeMem

;Fill in KickMemPtr
lea (KickMernPtrData+14+FastBoot,pc),aO
move.w #1, (aO)+ ;number of entries in the table
lea (FastBoot,pc),a1
move.l a1, (aO)+ ;address of bootblock & the kickrnemptr list
move. 1 d7, (aO)+ ;length of above (1124 bytes)

lea
move.l
move.l

(KickMemPtrData+FastBoot,pc),al
(KickMernPtr,a6), (a1) ;chain
aI, (KickMemPtr,a6)

;Fill in KickTagPtr
lea (MyKickTagPtr,pc),aO
move.l (KickTagPtr,a6), (4,aO)
beq.b .NoChain
bset #7, (4, aO)

.NoChain:
move. 1 aO, (KickTagPtr,a6)

;Fill in the proper kick checksum
SYS SumKickData
move. 1 dO, (KickCheckSum,a6)

;Install the 1MB agnus fix in ColdCapture
lea (agnusfix,pc),aO
move. 1 aO, (ColdCapture,a6)

;Recompute ExecBase checksum
bsr.b ExecBaseChecksum

;Fill in disk dimension structure
;This rather unusual approach saves several bytes.

lea (EndCode,pc),aO
lea (FillPacketlnfo,pc) ,a1
moveq #7,dl
moveq #O,dO

fillpacketloop:
move.b
move.b
dbra

(al)+,dO
(a1)+, (O,aO,dO.w)
d1,fillpacketloop

:Add our driver to the exec device list and mount WB:
lea (Driver,pc),a1
moveq #1, dl ; "segment" (used here as a special flag)
SYS InitResident

movem.l
bsr.b
bsr.b
bne.b
moveq
add.l
rts

CheckVersion:

(sp)+,dO-d7/aO-a6
findres
CheckVersion ;version 1 .. 3?
warmbootlink ;if not, then don't try to fix the bug
#$30,dl
dl, (a7) ;skip over code to add an extra "DFO"

;Using this tiny subroutine saves 2 bytes overall (wow!)
cmpi.w #34, (LIB_VERSION,a6) ;version 1.3?
rts

ExecBaseChecksurn:
:enter with a pointer to ExecBase in a6

68 AC's TECH

DJComputers.cz

iuses dO,dl,aO

sumloop:

findres:

Nope:

lea
rnoveq
rnoveq

add.w
dbra
not.w
move.w
rts

movea.l
lea
SYS
movea.l
rnovea.l

moveq

rts

(SoftVer, a6) , aD
!l23, dO
!lO,dl

(aO)+,dl
dO,sumloop
dl
d1, (aD)

(4) .w,a6
(dos,pc),al
FinclResident
dO,aO
($16,aO) ,aO

!lO,dO ;this clearing of dO is ABSOLUTELY needed for
i"nope" (a dunnny driver function) !!

; IIII AutoBoot structure IIII
;Note that we take advantage of the holes in the bootnode
istructure by overlapping several structures. For a less
;confusing view of the bootnode, refer to the accompanying
;article.

MyBootNode:
dc.b
dc.b
dc.b

relocl: dc.l
dc.w
dc.b

MyConfigDev:
;* 16 bytes of
MyKickTagPtr:
reloc2:

dc.l
dc.l

seminormalboot:
lea
bra.b

ResetCount:
dc.w

MyDiagArea:
dc.b

Name: dc.b
warmbootlink:

, (C)1990' ;space for list linkage
16 ;type - this is crucial
127 ;priority - this gets changed to BootPriority

;after a keyboard reset (see InitDriver)
MyConfigDev ;ConfigDev (required)
o ; flags
'byDE'

nothing

Driver
o

;ptr to dosnode, filled in later

;this zero is important, not just a space filler

(64,a7) ,a7
findres

;pop

$FFFF

16
'WE',O
bra.b

;irnportant constant

warmboot

;*** NOTE: this value is UNSIGNED, so the bootpoint code
;MUST lie after the diagarea!

dc.w bootpoint-MyDiagArea
bootpoint:
;this is the standard bootblock code (almost)

bsr.b
jmp

reloc3: dc.l

findres
(aD)

MyDiagArea

;////////1// ////

ColdBoot:

even

clr.l
SYS
move. 1

;just in case

(KickTagPtr, a6)
SumKickData

;clear KickTagPtr

dO, (KickCheckSum,a6) ;we do this to keep the 1MB Agnus fix
;intact even after we deinstall
;FastBoot.

;We clear CoolCapture to remove a remnant of ZKick, if used.

warmboot:

clr.l (CoolCapture,a6)
bsr ExecBaseChecksum

bsr
bls.b
SYS

CheckVersion
MyReset
ColclReboot

;compare Exec's LIB VERSION with 34

;only available in 2.0+

Hot Out Of The Oven ...

Recipe-Fax 2.0
With Complete Recipe Editing
Environment, Serving Adjl.llltmenls,
Shopping llst, Unit US/Metric
Conversion, Printing ... $44.95
Also available Nutri-Fax, Variety &
Dessert Recipe Disk Cookbooks.
Meggido Enterprises (714)683-5666.

Circle 144 on Reader Service card.

• Memory
Management, Inc.

Amiga Service
Specialists

Over four years experience!
Commodore authorized full service

center. Low flat rate plus parts.
Complete in-shop inventory.
Memory Management, Inc.

396 Washington Street
Wellesley, MA 02181

(617) 237 6846.
Circle 186 on Reader Service card.

PREMIERE ISSUE 69

DJC
om
pu
ter
s.c
z

MyReset:
lea (magicresetcode,pc),aS
SYS Supervisor

inever returns - jumps to magicresetcode

dos: dc.b 'dos.library',O
expansion: dc.b 'expansion. library' ,0

quad ;this MUST be longword aligned
; However, you should always try to arrange the code so that
;a dummy word is not needed - and it's not needed in this
;version. If you change the code size, keep this in mind.
magicresetcode:

lea (2),aO
reset
jrnp (aO)

;end of reset code

agnusfix:
;fix bug in 1.2 and 1.3 kickstarts - very important for
;>S12K of CHIP. This code is equivilent to the "r" option of
;SetPatch.

move.l

movea.l
cmpLI
bne.b
jmp

skipagnusfix:
jmp

relocinfo:

aO, (ColdCapture,a6) ;coldcapture is cleared upon entry - we
;must restore it

($3e,a6) ,a3
#$B7FC0004, ($le,aS) ;crude version check
skipagnusfix ;not 1.2 or 1.3, so don't do anything at all
($le,aS) ;the $le offset skips over the buggy code

(as)

;table used to relocate the absolute addresses used in the
idriver

Table2:

reloc4:
relocS:
reloc6:

dc.w
dc.w

dc.w
dc.w
dc.l
dc.l
dc.l

relocl,reloc2,reloc3,reloc4,reloc5,reloc6,reloc7
reloc8,reloc9,reloc10,reloc11,reloc12,reloc13

o ;end of relocation info (and start of table2)
30
Functions
DataTable
InitDriver ;tell dos about our device

;*** RAM disk Driver ***
Driver:
Tablel:

reloc7:
reloc8:

dc.w
dc.l
dc.l
dc.b
dc.b
dc.b
dc.b

reloc9: dc.l
dc.l

reloc10: dc.l

Functions:
dc.w -1

dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w

DataTable:

$4AFC
Table1
EndCode
RTF AUTOINIT+RTF COLDSTART
o iversion
NT DEVICE
20 ;priority
Name
o ;who needs an idstring, anyway?
Table2

;this indicates that the following are offsets,
;rather than absolute addresses
Nope-Functions
Nope-Functions
Nope-Functions
Nope-Functions
StartIO-Functions
Nope-Functions
-1 ;this delineates the end of this table

;Initialization data for the device structure

; INITLONG LN_NAME,Name
dc.w $aOOA

relocl1: dc.l Name

dc.b
dc.b

o

70 AC's TECH

;end of initstruct table
ispace filler

DJComputers.cz

AddMem:
;Special code to support the two most popular AIOOO hacks
;This code is perfectly harmless on other machines.

;Note that this routine requires the ExecBase ptr to be in
;a6.

;Toggle the motor (which also toggles the LED on drives
supplied by C= and most 3rd party drives)

;This enables the extra 512K at $80,000 for some AIOOO
;owners.

addmeml:

moveq
moveq
movea.l
bclr
bset
bclr

bset
bset
bclr

#3,dO
#7,dl
#$bfdlOO,aO
dl, (aO) ;motor on
dO, (aO)
dO, (aO)

dl, (aO) ;motor off
dO, (aO)
dO, (aO)

suba.l a2,a2
;Check for the presence of memory at $F80,000
;Note that the test is nondestructive

movea.l #$f80000,aO
move.w (aO),dO
move.w #$2931,d3 ;test word
move.w d3, (aO)
cmp.w (aO),d3
bne.b skipkickadd
move.w dO, (aO)

;Add our extra memory
moveq #4,dO
swap dO ;load $40,000 (262,144)
bsr.b addmemsub

skipkickadd:
moveq #8,dO
swap dO ; load $80,000 (524,288)
movea.l dO,aO

;Safety check:
;$80,000. This

cmp.l
bne.b

if MaxLocMem is not $80,000, don't addmem at
case occurs when using a >512K Agnus.

(MaxLocMem,a6),dO
skipaddmeml

;Check for memory at $80,000
move.w (aO) ,dl isave
rnove.w d3, (aO)
cmp.w (a2) ,d3
beq.b skipaddmem
move.w dl, (aO) irestore

;dO.l (length) and aO.l (starting address) must be set first
addmemsub:

moveq #MEMF_PUBLIC+MEMF FAST,dl ; attributes
moveq
suba.l
SYS

skipaddmem:
clr.w

skipaddmeml:
rts

InitDriver:

#0,d2 ipriority
al,al iname
AddMemList

(a2)

movem.l dO-d7/aO-a6,-(sp)
movea.l (4) .w,a6

ithe "segment" is in aO
;a special trick (like it?)

move. 1 aO,dO ;set the flags (no other purpose)
bne.b JustMount

bsr
beq.b
lea

CheckVersion
.IDI
(ResetCount,pc),aO

PREMIERE ISSUE 71

DJC
om
pu
ter
s.c
z

.IDI

. ID2:

addq.w
beq.b

lea
move.b

U, (aD)
.ID2

(9+MyBootNode,pc),aO
#BootPriority, (aO) ;set boot priority. OFO is priority

; five •

btst
beq

#7, ($bfeOOl) ;check port 2 fire button
ColdBoot ;go if pressed

bsr AddMem
;Call AllocAbs to reclaim our memory

lea (RamPtr+FastBoot,pc),a2
moveq #3,d6

;The next instruction was broken apart logically so that
;the operand could be used elsewhere.
;Equivilent to: move.l #22S280,d7

de.w $2E3C
ChunkSize:

AbsAlloeLoop:
movea.l
move. 1
SYS
dbra

JustMount:
movea.l
lea

de.l 225280

(a2) +,al
d7,dO
AllocAbs
d6,AbsAllocLoop

;220K

SYS
movea.l
lea

(4) .w,a6
(expansion,pe),al
OldOpenLibrary
dO, a6

; (this clears dO)

SYS
lea
movea.l
lea
rnove.l
SYS

enddriverinit:
movem.l
rts

Start 10:

(parmpaeket, pc) ,aD
MakeDosNode
(eb_MountList,a6),aO
(4) .w,a6
(MyBootNode,pc),al
dO, (16, all ;store
Enqueue ;Adds BootNode

(sp)+,dO-d7/aO-a6

movem.l dO-d7/aO-a6,-(sp)
movea.l (4) .w,a6

;pointer to eb MountList

;pointer to a boot node structure
DosNode pointer in BootNode structure

to eb MountList

clr.b (IO_ERROR,al) ;No error - in fact we never report an error
move.w (10 COMMAND,al),d7
movem.l (IO=LENGTH,al),d3-d5 ;load 10_LENGTH, 10_DATA, &
movea.l d4,a4
moveq #64, d6
rol.l #3, d6
moveq #2,d4

;d3 10_LENGTH; a4 = 10_DATA; d5 = 10_OFFSET; d6 = 512
;d7 10_COMMAND; d4 = 2

move.l
bclr
cmp.w
beq.b
cmp.w
beq.b
crnp.w
beq.b

d3, (10 ACTUAL,al) ;IO_ACTUAL
#l5,d7-

IO LENGTH

clr.l

d4,d7
ReadWrite
B,d7
ReadWrite
#11, d7
ReadWrite

;If command is unknown, ignore it
cmdreturn:

; format

;IO_ACTUAL - this is definitely needed!
iotherwise we get a "no disk in drive" message!

btst
bne.b
SYS

#lOB_QUICK, (IO_FLAGS,al)
TermEnd
ReplyMsg

TermEnd:
bra.b enddriverinit

ReadWrite:

;The following chunk of code computes the address in RAM
;corrisponding to IO_OFFSET (in dS) .

72 AC's TECH

DJComputers.cz

• compute

move. 1
moveq

addq.l
movea.l
sub.l
bcc.b

lea
adda.l

d5,dO
#-4, d1

#4,d1
dO,aO
(ChunkSize,pc),dO
.compute ;>=, unsigned

(mem1+FastBoot,pc),a2
(a2,d1.w) ,aO

move. 1 d6, dO
innerreadwriteloop:

cmp.w d4,d7 ;check crnd
bhLb writeit

move. 1
subq.l
bne.b

ReadWrite1:
add. 1
sub.l
bhLb
bra.b

writeit:
move. 1
subq.l
bne.b
bra.b

(aO) +, (a4) +
#4, dO
innerreadwriteloop

d6,d5 ;add 512 to the current offset
d6,d3 ;subtract 512 from the length
ReadWrite
crndreturn

(a4) +, (aO) +
#4,dO
writeit
ReadWritel

FillPacketlnfo: ;note 8 pairs
;The first byte in each pair is a byte offset into the
;parmpacket. The second byte is the value to put
;there.

dc.b 11,11
dc.b 15,128
dc.b 23,2
dc.b 27,1
dc.b 31,11
dc.b 35,2
dc.b 51,79
dc.b 55,5

parmpacket:
reloc12:
dosnameptr: dc.l Name
reloc13:
execnameptr: dc.l Name

;The following is the structure that will be generated dynamically using
;FillPacketlnfo.

dc.l 0
dc.l 0
dc.l 11
dc.l 128
dc.l 0
dc.l 2
dc.l 1
dc.l 11
dc.l 2
dc.l 0
dc.l 0
dc.l 0
dc.l 79
dc.l 5

EndCode:

;unit number (not very important)
;OpenDevice flags (not used in this case)
;upper bound of this table, in longwords
;number of longwords in a block (512/4)
;sector origin (never used)
;number of surfaces
;sectors per logical block (cluster size) - never used
;sectors per track
;reserved blocks - 2 boot blocks
inever used
; interleave
;lower cylinder
;upper cylinder
;number of buffers

;Note that there are 24 bytes after the disk dimension structure
;used for holding the KickMemPtr information starting at
;offset 1072 and ending at offset 1096 noninclusive.

;The four RamPtr pointers start at offset 1096 and end at
;1112. These pointers are the result of the four AllocMem
;calls, each requesting 220K.

END

PREMIERE ISSUE 73

DJC
om
pu
ter
s.c
z

r .J r

The Complete Amazing Computing library
which now includes Volume 5

is available at incredible savings of 500/0 off!
• Volume 1 is now available for just $19.95*! •

(A $45.00 cover price value, the first year of AC includes 9 info-packed issues.)

• Volumes 2, 3, 4, & 5 are now priced at just $29.95* each! •

Subscribers can purchase freely redistributable disks** at bulk rate discount prices!

This unbeatable offer includes a" Fred Fish, AMICUS, and AC disks
(see the back of this issue for recent Fred Fish additions, and the

FalllWinter'90 AC's Guide
for a complete index of all current freely redistributable disks).

Pricing for subscribers is as follows:
• 1 to 9 disks: $6.00 each
• 10 to 49 disks: $5.00 each
• 50 to 99 disks: $4.00 each
• 100 disks or more: $3.00 each

(Disks are priced at $7.00 each and are not discounted for non-subscribers)

To get FAST SERVICE on volume set orders, freely redistributable disks,
or single back issues, use your Visa or MasterCard

call 1-800-345-3360
Or, just fill out the order form insert in the issue.

* Postage & handling for each volume is $4.00 in the U.S .• $7.50 for surface in Canada and Mexico. and $10.00 for all other foreign surface.
*' AC warranties all disks for 90 days. No additional charge for postage and handling on disk orders. AC issues Mr. Fred Fish a royalty on all disk sales to enccurage
the leading Amiga program anthologist to continue his outstanding work.

DJComputers.cz

AmigaDOS for Programmers

Exploring DOS
Library Calls and Features

by Bruno Costa

The Amiga system software is clearly layered into
multiple levels of complexity with well-defined purposes. It is
completely implemented as calls to memory-resident or disk­
resident system libraries that contain virtually all the functions
and data a program needs to control every feature of the
machine. Managing the lowest level characteristics is Exec, the
multitasking kernel where things like task switching, messages,
signals, processor exceptions and device-task communications
are handled. There is also the graphics library that controls
custom chips and basic graphics. The layers library provides a
way to share graphic screens between multiple tasks, "slicing"
the display into layers (very similar to windows). At a higher
level, Intuition uses all of these to implement the menus!
Windows/gadgets graphical user interface. "But what about
AmigaDOS ?", you may ask. Well ...

Exec provides some tools that allow multiple programs to
communicate with devices by sending messages back and forth,
but the Exec devices just read and write blocks of data; we need
a way to logically divide the space of each disk device into
directories and files. That's one of the tasks of AmigaDOS, in
addition to file formats, protection bits, processes (an enlarged
task), device handlers, virtual device name assignment and a
powerful interface to all of these activities. Normally, when you
use the CLI, you do not call AmigaDOS directly (this is only
possible through programs). Rather, you load files in executable
format (executable programs) which, in turn, call AmigaDOS.

This article is not intended to be a full reference or an
entry-level tutorial. Rather, it represents a collection of personal
findings and tips on how to call AmigaDOS from inside your
programs. Combined with the AmigaDOS Developer's Manual,
the AmigaDOS Technical Reference Manual, and the example
programs provided at the end of the article, I hope to make
clear how-and sometimes why-things work (or do not). If
you want to delete files, find out file sizes, attributes or the
amount of disk space free, create or read directories and even
run processes from inside your programs, read on.

Files
AmigaDOS provides a basic set of file-handling functions

that range from simple read/write operations to low-level
information and locking protocols that allow simultaneous file
access by concurrent processes. There are two ways under
AmigaDOS to identify files: Locks and handles.

Locks are used to notify the system that you want to
access a file (or directory); they thus forbid another process to
modify that file while you are reading it, or to read it while you
are writing. A lock also provides a unique identification for a
file that is frequently used by library functions to describe which
file you are referencing. A lock can be obtained explicitly by a
call to Lock (filename, access), where filename is a regular file
name and access is either ACCESS_READ (same as
SHARED_LOCK) or ACCESS_WRITE (same as
EXCLUSIVE_LOCK). Lock() will fail, returning a NULL value, if
the given file is not accessible (e.g., the file does not exist or is
already exclUSively locked), so it can be used to check it. When
you are done with the file access you must call UnLock (lock),
where lock is a valid lock returned by the previous Lock() call.

In case you want to read or write to a file you will need
something more robust and meaningful than a lock: a handle.
Handles are obtained explicitly by a call to Open (filename,
access), where access is now either MODE_NEWFlLE or
MODE_OIDFILE, to create a new file or use an existing one.
Once you have a handle, you will be able to perform read and
write operations on a file; this can be achieved by Read (handle,
buffer, length) or Write (handle, buffer, length), where buffer is
a piece of memory of length bytes where you want the data to
be written to or read from. Both functions return the actual
number of bytes processed, which can be less than expected
(due to end-of-file or disk-full conditions, for instance), or -1 in
case of an error. When you are done with the file you must call
Close (handle). Note that you needn't lock a file for reading or
writing when you use Open(), as this is done automatically.

PREMIERE ISSUE 75

DJC
om
pu
ter
s.c
z

A major source of AmigaDOS power comes from the
transparency with which the system treats devices as different as
a hard disk file, an Intuition window or the serial port (there is
now even the SPEAK: device!). Inside your program you may
call Open ("SER:", MODE_NEWFILE) for instance and, if you
use the resulting file handle, you will be able to read from or
write to the serial port exactly as though you were using a
normal file. Normally these special files cannot be read more
than once, since data is not stored inside them permanently.
They may be seen as a continuous, ever-flowing stream of bytes
(either incoming or outgoing) that, once read, is completely
discarded (unless you store it somewhere else).

On the other hand, there are some files (the so-called
random access files) where any particular portion can be read
and reread many times (disk files are always of this type). For
special applications you may need to move back and forth
through a random access file, especially to go to a particular
place in the file at once. This can be done using the Seek
(handle, position, reference) call. Position is an integer (positive
or negative) specifying to which particular byte position you
want to move; reference tells the system from where you are
counting the given position. It may be one of
OFFSET_BEGINNING (from the first position in file),
OFFSET_END (from the last byte in file) or OFFSET_CURRENT
(from the last position you read or wrote to). Seek() returns the
previous file position counted from the start of file or -1 in case
of error (e.g., the file is not random-accessible or the specified
position is outside the existing file). Note that Read() and
Write() do their work at the current file position (modifiable at
any time by the Seek() call), making it possible to read (or
write) arbitrary portions of a file as many times as you want.
Here are some examples:

Seek (file, 0, OFFSET BEGINNING) ; "'rewinds'" a file
pcs = Seek (file, 0, 'OFFSET_CURRENT) ; returns current

; position leaving
; file unchanged

Seek (file, D, OFFSET_END) ; goes to end of
; file (useful for
; appending data)

The ability to move directly to particular positions in a
file may be very useful for indexing files. You could use it to
write a help facility for a program. In addition to the help file (a
plain text file), you would have an index file containing the
positions of each help page in the help file. If the user needed
the third help page, for instance, your program would read the
third number in the index file; this number would determine the
place in the help file where the third page started. Then you
would call Seek() for the help file with the index number you
just read, and the file pointer would move to the exact position
where the page started. You should then call Read() to load the
help page and display it afterwards. Note that this approach will
make access to the file much faster than the conventional
sequential access (with the latter method you would need to
read the whole file to find each particular page).

There are two other calls very useful for file manipula­
tion: DeleteFile (filename) and Rename (oldname, newname).
Their names are more than self-explanatory. Both functions
return TRUE when successfully executed and FALSE when there
is an error (if the disk is write-protected, for instance).

76 AC's TECH

Now you should know enough to check some of the
examples. The file copy program, named cp.c, is a good, simple
example (but not so powerful, since it does just a subset of
what the AmigaDOS copy command does). It Simply reads from
the first file and writes to the second as long as it can. There is
also another example, named del.c, that shows how to call
DeleteFile() properly. Experiment with the programs-but
please, not on your hard disk or on the only copy of that nice
utility (the programs work, but who knows?).

Standard I/O
I mentioned that processes are handled by DOS, but did

not explain how or why. A process is a task that knows what
files, paths, and current directory are; a normal task just knows
how to handle processor and multitasking-related events. If you
want to call AmigaDOS you must do so from inside a process,
because knowledge of these things is needed by most of the
routines. If you run your program normally (from the CLI or
Workbench) that will not be a problem since it will be spawned
as a true process. A process also knows a standard place to read
data and another to write. This is very similar to the C
language's stdin and stdout, which are implemented on top of
these process features.

To obtain the standard file handles you may call Input()
or Output() which take no parameters and return the respective
handles. You may use these handles at will (as long as you
write to output and read from input, of course) and you don't
have to close them (in fact, you can't). Standard I/O provides a
simpler way to access files (since you don't have to open or
close them), and for certain programs they are a natural
definition. These special programs are called filters because they
read a stream of bytes, do some processing (or filtering) and
write them to output. When there is an easy way to combine
multiple filters, sending the output from one as input to the
next, they become a powerful tool. One way to do this concat­
enation is called piping, a concept present in Unix and MS-DOS
machines but still lacking in the Commodore shell. To use
pipes, you would simply type two (or more) program names
separated by a piping symbol, indicating that both programs
should be run simultaneously, piping the output of the first as
input to the next. Note that, to be usable in pipelines, programs
must be able to read from Input() and write to Output().

Now have a look at the second example program,
stdcp.c, a variation on the previous one that copies everything
from its standard input to its standard output, until end-of-file is
reached. When used with the CLI or Shell I/O redirection (the>
and < shell operators) it may be used with the same effect as
cp.c:

cp filel file2
stdcp <filel >file2
stdcp

screen until EOF (Ctrl-\) is typed

; copies filel to file2
; also copies filel to file2
; copies from keyboard to

You can see by the last example that if no redirection is
used the default input is the keyboard and the default output is
the console window. If your program is run through Work­
bench, these standard handles are normally invalid (Input() and
Output() return NUll), but if you wish to print messages you
may open a console window yourself (note that your compiler
may open a console window for you automatically).

DJComputers.cz

AHributes
AmigaDOS stores files as a linked list of disk blocks,

each containing some data and the number of the next block.
The first of these blocks is the header of the file, and it contains
several attributes of the file: protection bits, name, size, an
eighty-character comment and the last modification date. A
directory is also stored as one of these header blocks, with the
size equal to zero and no data blocks. All this information can
be obtained transparently using the Examine (lock, fileinfo)
library call, where lock is a lock on the target object (either a
file or directory) and file info is a pointer to a previously
allocated FilelnfoBlock structure. If Examine() returns TRUE,
the structure was filled with the correct information on that
object; otherwise an error occurred. The FilelnfoBlock structure
is defined in libraries/dos.h as:

struct Fi!elnfoBlock (
LONG fib DiskKey;
LONG fib - DirEntryType;
char fib-FileName [108] ;
LONG fib-Protection;
LONG fib - EntryType;
LONG fib-Size;
LONG fib - NumB1ocks;
struct DateStamp fib Date;
char fib Comment [80];
char fib:::ReserVed[36];

);

/* disk block number ID *1
f* specify file or dir *f
f* name of the file *f
/* protection mask */

f* size of file (bytes) *f
/* size of file (blocks) */
/* modification date */
/.", file comment * /
1* future extensions */

The first field, fib_DiskKey, is normally the number of
the disk block where this object (file or directory) starts, but it
may be any unique integer identifier of the object on a particu­
lar disk (the RAM disk, for instance, does not have real disk
blocks). If the fib_DirEntryType field is positive the object in
question is a directory; otherwise it is a simple file. Both files
and directories have the fib_FileName and fib_Comment fields
filled with the correct zero terminated strings with up to 30 and
80 characters respectively. The sizes, used only for files, are
simply integers containing the number of bytes and number of
blocks occupied on disk. The protection mask in fib_Protection
will be explained later with the SetProtection() call. The field
fib_Date contains the date the file was last modified in the
following format:

struct DateStamp {
LONG ds_Days;
LONG ds_Minute;
LONG ds_Tick;

);

/* Number of days since 1/1/1978 */
f* Number of minutes past midnight *f
/* Number of 1/50 secs past minute */

Now have a look at the example program examine.c. It is
simply an Examine() CIl interface, allOWing you to examine
any file or directory by giving its name as an argument to the
program. The output is a C-like formatted FilelnfoBlock
structure with the fields and corresponding values shown. Use it
to understand exactly what the fields mean and how different
devices may respond to the Examine() request.

Some of the file attributes can be modified using
corresponding library functions. The SetProtection (filename,
mask) call returns TRUE if the new protection bits of the file
filename are set to mask. Currently the protection bits may be a
combination of script, pure, archive, read, write, execute and
delete permissions, and they have the following order and
meaning:

S 1 if the file is a shell sCript, else O.
P = 1 if the file is pure (can be made resident), else O.
A = 1 if the file was archived (for hard disk backups),else o.
R = 1 if the file cannot be read, else o.
W = 1 if the file cannot be written to, else O.
E = 1 if the file cannot be executed, else o.
D = 1 if the file cannot be deleted, else o.

If, for instance, a file has protection bits -RWED
(0000000) the mask is OxOO; for 5-R-E- (1000101) mask is Ox45;
for SPARWED (1110000) mask is Ox70.

The comment of a file can be changed using the
SetComment (filename, comment) call that returns TRUE if the
comment of filename was successfully changed.

Note that the Rename() call modifies the fib]ileName
field. Other file attributes can also be changed, but not directly.
The date and sizes of the file are modified if you write to it. You
may read one byte and write it back to the same place to
modify a file date but not its contents, as the program touch.c
does. Touch.c is used to set the date of a file to the current
date, and is also an example of the Seek() call since it is used
to move back to the start of the file to write the byte. Note that
there is a better way to change a file's date (the method used by
the AmigaDOS SetDate command) but, unfortunately, there is
no direct library call to do it.

You saw that Examine() allows you to gather informa­
tion on files, but to get information on a disk device status you
need to call Info (lock, infodata), where lock is a lock on any
file or directory in the device and infodata is a pointer to an
allocated InfoData structure. Info() returns TRUE if the informa­
tion was successfully obtained and the InfoData structure
properly filled. This structure is defined in Jibraries/dos.h as:

struct InfoData {
LONG id_NumSoftErrors;
LONG id_UnitNumber;

/* Number of soft errors on disk * /
1* Which unit disk is *1
/* (was) mounted on *1

LONG id_DiskState; 1* Validation (see below) *1
LONG id NumBlocksi 1* Number of blocks on disk *1
LONG id=NumBlocksUsed; 1* Number of block in use *1
LONG id BytesperBlock; /* Number of bytes on each block *1
LONG id=OiskType; 1* Disk Type code (see below) *1
BPTR
LONG

};

id _ VolumeNode:
id_InUse; 1* Flag, zero if not in use *1

Most of the information in the InfoData structure is
presented to you by the info Cll command. The number of
software errors, for instance, is exactly the same as presented by
info. The id_DiskType is the disk ID present in the first four
bytes of the disk, and may be one of the follOwing:
ID_NO_DISK_PRESENT, ID_UNREADABLE_DISK,
ID_DOS_DISK, ID_NOT_REALLY_DOS or
ID_KICKSTART_DISK. The id_DiskState indicates the disk
validation status (disk validation is a testing process executed
every time you insert a disk in a drive): ID_WRITE_PROTECTED
if the disk could not be validated; ID_ VALIDATING if the disk is
currently being validated; or ID_VALIDATED if the disk was
correctly validated and is thus write-enabled. The most useful
information you can obtain from the info call regards disk size
and space, which can be calculated as follows:

PREMIERE ISSUE 77

DJC
om
pu
ter
s.c
z

Allows A1000 owners to add up -=-
to 1.5 Meg of Fast Ram
internally. User expandable in 0 . -c::::r
512K mcrements. Includes DC3:iloCClloCCll
attery backed clock calendar. E3

Simple installation, no soldering
uired. The Insider II is compatible with IIG1

the KwikStart Rom board. From the maker 0010 0
f the first internal Ram board for the
1000. Retail Price $ 249.95 w!0K

KwikStart AIOOO MultiStart II
Vl.3 or V2.0 ASOO & A2000

Allows 2 c:=:J -- c::::J Allows MOO

L c::::J 0 0
install VI.3 ,c:::::J c:::::J '" c:J install Kickstan
or20 VI.3 and V2.0 0 0 .." n:IJ[]e]
up 2S6K of - ------ - them with the 1....-..11

memory to use as Fast Ram under keyboard. Can also install a third
VI.3. UPlrade to the latest operating Rom. Lets you stay compatible
system and still be able to use with your software. No extemal
Kickstart from disk if needed. wires or switches required.

Retail Price $ 99.95 w/o Roms Retail Price $ 99.95 w/o Roms

eg lp
2 Meg of Chip Ram for the A2000

If you use your Amiga for Graphics, c=:::.

RDeskdetot> 3.0 II r----·· j • j en nog unauon, or tim - I 0: c:= c:=

Then you need the MegAChip 2000. I - I

Doubles the amount of memory accessable I - D - I

to the custom chips. Allows you to have a c::=::J = : = :
total of 10 Meg of Ram. Fully compatible • - --
with System 2.0 and the ECS Denise chip. Retail Price $ 299.95 w/MaAory

w/o 2.Mel Apus

The BattDisk
Battery Backed Static RamDisk

Super fast Static Ram Disk for the A2000 & A3000.Allows you to have
up to a 2 Meg RamDisk and still have 2 Meg of Chip Ram and 8 Meg of
Fast Ram. Easily expandible in 64K or 256K increments to 2 Meg.
Excellent if you are working with Multimedia applications or animations
where you need fast access to flIes. Can be used to boot your system,
fully autobootable under 1.3 to FFS. Also can be hardware or software
write protected. 1"1 1"1 0 ODe & 1+ Programmers - Keep U U

your source code in fast 0.0 0 0 0 0
guru safe static ram.

-I

0 1010 0 0
I

All Products come with a r"':1

Full One Year Warranty. . g
Contact your local dealer or call for more infonnation. 832 First St. MI 48381

313 685-1.383
Retail Price $ 269.95 w/0K

Circle 159 on Reader Service cerd.

TotalDiskSize = id NumBlocks * id BytesperBlock
UsedDiskSpace = id-NumBlocksUsed * id BytesPerBlock
FreeDiskSpace = TotalDiskSize - UsedDlskSpace

The example program space.c, when given the name of a
disk device or any file in it, shows the used, available and total
disk space in that device by calling InfoC). You can use it as an
example of how to display the disk available space in a file
requester, for instance.

Directories
When you use the ell, the concept of a "current

directory" is always present: it is a special directory where you
"are", and no path names are required to refer to files inside it.
When a process is created it has a current directory, normally
inherited from the process that spawned it. If it came from the
ell, the current directory is exactly the same as the ell's when
the process was begun (if you use the cd command after you
start a process, the current directory of this process will not be
modified). If it came from Workbench, the initial current
directory is the drawer where the program was stored. If you
wish to change the current directory of your program, you may
call CurrentDir (lock), where lock is a lock on the new current
directory, and the old directory is returned from the function.
Note that the current directory of your process will be modified
(but nothing else), because the current directory is a property of

78 AC's TECH

each process. If you subsequently spawn a new process it will
inherit this new current directory, but previously spawned
processes will not be affected.

Directories under AmigaDOS (and many other operating
systems) are hierarchically organized as an upside-down tree, in
such a way that a particular directory may have as many
subdirectories as the user wants, but there is only one way up.
The subdirectories may be called "child" directories, and they
have a corresponding unique "parent". To traverse a directory
tree, one must be able to know the available ways down (by
reading the directory) and how to come back up. The latter task
is accomplished by the ParentDir (lock) call, which returns a
lock on the parent directory of the me or directory given by
lock. Although not very useful, there are some cases when this
call cannot be substituted in any way, as in the example
program full.c. The program is basically a maine) proVided to
test a rather useful routine that returns the path name of a file
(or directory) given by a lock. It continues to call ParentDir() to
get a lock on the parent directory and Examine() to know its
name, until the root of the filing system is reached. The last
name obtained before ParentDir() returns NUll is the disk
volume name. The directories are concatenated with intermixed
slashes and separated from the disk name by a colon (:),
building a complete path name. Note that a similar function is
provided in the standard Lattice e library (no source, of course)
with the name getpath().

DJComputers.cz

If you wish to create a directory on disk, you should call
CreateDir (dirname). The string dirname may contain complete
or partial AmigaDOS path names. If possible, the routine will
create the specified directory and return a shared lock on it.
Normally you will unlock it immediately, unless you need to be
sure that the directory will still be there for a certain operation
to take place. Note that, in any case, you must unlock it sooner
or later. If an error occurs, this function will return a NULL
value.

Now that you know how to create and move inside a
directory hierarchy, you just need to learn how to read the
contents of a directory. The ExNext (lock, info) call is provided
specifically for this purpose. It returns TRUE if it succeeds, and
takes two parameters: Lock is a lock on the directory you are
reading, and info is a pointer to a FileInfoBlock structure
(described in the first part of the article and defined in libraries!
dos.h). The FileInfoBlock must be previously initialized with
data from the directory you are reading by a call to Examine
Clock, info). After that you should look inside info to see if the
lock is indeed related to a directory, and not to a file. Each time
you call ExNext() it returns information on a particular object in
the directory; when you call it again, it uses data inside info to
determine which object is to be examined next. Note that the
information provided is quite comprehensive and may be used
in any way, but you should not modify fields inside info
because ExNext() may need them the next time you call it. You
continue to examine each object in the directory until no more
entries are left and ExNext() returns a FALSE condition.

The complete procedure needed to read a directory is
detailed in the example program Is.c. It lists the complete
information on a given directory, and uses Examinee) and
ExNext() in the manner described above. The information is
presented in a somewhat rough format, and things like the
protection bits and the date are not converted to humanly
legible form. The program is very simple, but can be improved
to read arbitrary directories in a general form. This might be
done by writing a routine that returns a list of file information
blocks which could be used by many different tasks where it is
necessary to read a directory, including wild card expansion and
file requesters.

Process Handling
Although very different to the end user, there are some

similarities between the CLI and Workbench. Both provide a
user interface to some of the features of the underlying operat­
ing system, tools to manipulate files and run programs. In a
strict sense both are "shells" over the operating system: the CLI
is a classic command line shell , with powerful concepts
inherited from other operating systems (like Unix); Workbench
is a graphical shell, easier and more intuitive to use. In fact,
there are some commercial programs (like CLIMate, DiskMaster
and DirUtil) that can be also considered shells. It is possible to
create your own shell, with any interface you desire (e.g.,
graphical, touch-sensitive, voice-driven) using the concepts
provided here and in the reference material (although it may be
quite complicated to write a truly complete and useful one). An
example will be provided at the end of this section.

AmigaDOS lacks easy-to-use, complete process spawning
and handling functions. The two calls available to create new

c=: The Memory Location (I[
Amiga specialists! Full service Commodore dealer.

Commodore authorized Educational dealer.

Wilh live years experience selling
and servicing Allliga personal

computers software and
accessories.

The Memory Location is New
England's number one Amiga

dealer.

The Memory Location will not be

All .. ' .. -..•
and on display, for you to try

bdore you buy.
A great selection of harddri ves,

printers, scanners, memory
expansion, and excellerators in

stock and at low prices.

--The
Menl0ry
Location Installation, testing, and training all

available from our experienced
service and sales stafr. 396 Washington Street

Wellesley, MA 02181
(617) 237 6846

Store hours: MOI1.-Thur. IO-6,Fri. I 0-8,Sa\. 9-5

Amiga experts!

Low flat labor rale, plus part.

Circle 107 on Reader Service cerci.

processes are very poorly documented, limited and full of bugs
in such a way that only after considerable experimentation can
one make any use of them. It is likely that developers write
their own substitutes for these functions when truly correct and
complete process handling is needed. To create some simple
processes, consider the Execute Ccmdline, input, output) call. It
attempts to execute the Cll command (given with any needed
parameters in cmdline), and returns a TRUE condition if it
succeeds. The string cmdline may also contain any standard I/O
redirection specifications. In fact, just about any input that can
be typed in the standard CLI can be executed by this call (at
least theoretically). Note that Execute() won't search your
commands throughout the current path-you will have to
provide full path names to be sure it will find them.

Although output is exactly what you would expect (a
handle to specify where the command's output should be
written to), input is a handle specifying where to get more
commands (similar to a batch file); usually it will be NULL. Note
that there seems to be no way to provide simple standard input
to programs run through Execute(), If output is NULL, the
current output (the handle returned by Output(» will be used.
However this is not all Execute() can do-it has one more
esoteric use. If you give it a NULL cmdline, a NULL output and a
console window handle as input (like the result of Open
("CON:O/O/6401200/My CLI", MODE_NEWFILE», a new
interactive eLI will be created! It will only terminate when the

PREMIERE ISSUE 79

DJC
om
pu
ter
s.c
z

Attention
Programmers

When you are ready to publish, let us
put our worldwide distribution
network, publishing and production
skills to work for you. Cleanly
executed, cutting edge programs in any
area of interest are wanted.

o/irtua{ Lavoratorie5, Inc.
2341 Ganador Court

San Luis Obispo, CA 93401

Circle 131 on Readar Service card.

user types the EndCLI command inside it; only then will control
be returned to your program (you should then close the
window you opened). Believe it or not, this call will not work if
the Run command is not present in the commands directory
(C:). Note that there is no way to determine the return value of
the commands run by Execute(), and that your program will be
frozen until the process you spawned terminates.

Just for the sake of completeness, a simple and limited
command-line shell (well, kind ot) is provided as sh.c. It will
read lines from a window and pass them directly to Execute()
that will (hopefully) do what you want, writing the output
normally to the window. Note that path, cd and many other
commands that modify fields inside the CLI control structure
will not work, because Execute() runs commands in a sub-CLIo
It allocates new CLI and process control structures, fills them
properly and spawns the program as a stand-alone process. If a
program modifies any field in the CLI control structure, only the
sub-CLI fields will be effectively changed because the program
being run simply does not know who ran it. When the program
terminates, the modified sub-CLI will be discarded along with all
changes made to it.

80 AC'sTECH

Error Handling
Error handling plays a major role in the development of

professional software. Good programs should always be entirely
operative and trustworthy, even in the worst situations.
AmigaDOS provides usual error-handling features, and almost
all library calls are able to notify error conditions. Usually, these
errors are only signaled as flags (an error occurred but no real
information on the nature of it is provided). The IoErr() call
supplies this information, simply returning the current error state
represented by an integer. Note that the error codes supplied by
IoErr() always refer to the last library call and that it is meant to
be called only after an error has happened. The error codes are
documented in the include file libraries/dos.h, and symbolical
names are given to them. If, for instance, you are reading a
directory and there are no more files inside it (the end-of­
directory condition mentioned above), ExNext() returns an
error flag and, if you call IoErr() just after this, it will return
ERROR_NO_MORE_ENTRIES. If you examine the ls.c source,
you will see how easy this simple case error handling is, but, as
programs grow and more complex situations appear, it may
become more and more difficult.

You may have noted the emphasis placed on freeing
what you allocate, closing what you open and returning what
you get. This is done because AmigaDOS does not track
resources--that is, it simply does not know which files you have
opened or locked. If you exit from your program without
freeing these resources, they will be lost forever: locked or
opened files will be undeletable, unwritable and sometimes
unreadable until you reboot your machine. This is a serious
programming error, and you should be very careful when
tracking the resources you get from the system (not only from
AmigaDOS, but also allocated memory, opened libraries and so
on), making sure they will be returned or closed by your
program in virtually every situation that may arise.

Libraries
Although libraries are handled by Exec, a thorough

understanding of how they work may help a good deal in
several programming tasks. There are two basic kinds of
libraries: Linked and shared.

Linked libraries are those that come with your compiler
and you use with the linker, the normal kind of library, similar
to those on almost every other computer. They are basically a
collection of object modules produced by a compiler, where the
linker knows how to find particular routines and variables. The
exact effect of a library could be achieved by giving dozens of
object files to the linker. The iinportant thing to know is that,
when you link a routine in your code (when you call printf(),
for instance), the program size increases proportionally.
Actually, a copy of that routine is placed inside the compiled
code of every program that calls it.

Shared libraries are those inside the LIBS: directory Oike
translator.library) or resident in read-only memory Oike
dos.1ibrary). We call them shared because there is a single copy
of each library routine even if multiple programs are calling it at
the same time (they share the common code amongst them). If
you call a shared library in a program it won't add much to the
code size, and the size of such a program may be dramatically
less compared to those linked with normal libraries.

DJComputers.cz

Shared libraries are unique to the Amiga and are made
up by some data space and a series of library vectors, or
assembly language jump instructions, which point to pieces of
code of that library that perform determined functions. You
(and the linker) simply don't know where in memory a particu­
lar library will be since, each time you tum on your computer,
they may be loaded in a different place. Only Exec can deter­
mine where the libraries are located, and to obtain the base
address of a library you should call the OpenLibrary() Exec
function. These library base pointers must be stored in some
fixed name variables, where the compiler looks to find them
OntuitionBase and DOSBase are some examples). It may seem
strange but, if you use a base pointer variable name that is
different from the standard one, the compiler will not know
where the library is and the program will not work (admittedly
this was quite hard to find out). The functions in a library are
"numbered" and, although you don't need to know these
numbers, your compiler does, and they are very well docu­
mented (check the Amiga ROM Kernel Reference Manual:
Libraries and Devices). As a hypothetical example, if you call
the function Bar(), which your compiler knows is the function
number 5 of the foo.library, generated code is simply something
like: "jump to the function pointed to by the ftfth vector counted
from FooBase."

AmigaDOS is implemented as a shared library
(dos.library) that is memory-resident, but you needn't worry.
The compiler-supplied startup code (that little thing that runs
and sets things up before maine)) normally opens the
dos.library automatically and places the base address in
DOSBase. If you wish, you can open the library yourself, as it
will not harm the system (as long as you close the library with
CloseLibrary (DOSBase) afterwards). Although you may need
some simple assembly language programming, it is possible to
write your own shared libraries and even modify existing ones,
but that's another story.

Conclusion
Hopefully the concepts presented here will help you to

write your own AmigaDOS applications and utilities. You might
have already found some limitations when experimenting with
the DOS library, but you will surely find even more if you try to
use it for a more complex task. Particularly, I think that the
AmigaDOS programmer's dream is already real, in the form of
the ARP utilities and library. ARP stands for AmigaDOS Resource
Project. It is a group effort headed by Charlie Heath (of
MicroSmiths, Inc.) and all their work can be freely redistributed.
ARP provides easier access to the AmigaDOS device list, easier
directory reading, wildcard patterns, date conversion routines,
argument parsing facilities, a ready-to-use and flexible file
requester, perfect synchronous and asynchronous process
creating calls, a complete shell including piping and much
more. You may obtain a copy of the latest ARP release (version
1.3) by sending $5.00 (postage and handling expenses) to the
following address:

ARP Support
c/o MicroSmiths, Inc.
P.O. Box 561
Cambridge, MA 02140

.!t 1
.

\ ' .' .

Creative Focus presents DJHelper a Preferences-like utility giving Amiga
owners complete control over Hewlett-Packard DeskJet printers. It lets you

• Select any typeface, character set, pitch, and point

• AclJult tI1e trct,Kctle 'Ilr euel'tlllll<ll tr<ll'l1I£I
• Edit and transmit any printer control sequence
• Have direct access to all page dimensions (lpi, &c.)

• Conv<rt, d'ownC ... d', 41\11' controC softfont.< (nqulrtS RAM C4rtrld'9<)

• Replace Amiga command codes with your own definitions

DJHelper requires AmigaDOS 1.3 or 2.0. It is available now for '50.00 from
Creative Focus, Box 580, Chenango Bridge, NY 13745-0580 USA

.---
-...

..

Also currently available from Creative Focus:

DJFonts 3 disks of converted public domain lofdoDts for DesUcta

SilverCIi ps two dins of original and unique hi-rcs B& W IFF images

Super _ DJ superior DestJe. priD'er driver (DO' Deeded with DJHelper)

$20.00

'30.00
'25.00

DeskJct is • reptered trademark of Hewlett·Packard; Ami,. i5 • reptered tr.demark or
Commodore; .ftd OJHelper, DJFonts, SilverClip5 •• ad Super_OJ are trdemarb or ere.tive Foe",.

..

. ,
:"\. '/ / ..

• t

.. -:... ..
- .);..

, .
Circle 132 on Reader Service card.

Be sure to obtain the complete release, with the programmer's
documentation, examples and proper compiler utilities (startup
code, include files and libraries). If you want to do serious
programming work under AmigaDOS it will be a valuable aid
ndeed.

About The Author -----,

Bruno Costa is a computer engineering
student and works with computer graphics
at the IMP A (Institute for Pure and Applied
Math) in Rio de Janeiro, Brazil. He has
owned Amiga computers since 1987.

PREMIERE ISSUE 81

DJC
om
pu
ter
s.c
z

A Unique
Input Device

Adapting

Mattei's

Power Glove

to the Amigo

By Paul King
and

Mike Cargal
bix pking, mcargai

82 AC's TECH

The interface between human and computer has changed
velY little since the earliest generations of computers , but today
there are some new devices coming out that promise to make
the task of translating ideas into bits and bytes much more
natural. Since its introduction, the Amiga has been one of the
most interactive and intuitive computers around, and hardware
is obtainable that extends its abilities enough to compete with
some much more expensive equipment. It is almost laughable,
then , that a popular video game machine has a readily available
peripheral that can come closer to natural input than any except
the most expensive devices around, while the Amiga and other
computers are left out in the cold. That device is MatteI's Power
Glove.

While the VPL DataGlove and the Dexterous Hand
Master from Exos are both available for computer use , each
costs more than your above-average new car. The Power Glove,
on the other hand (couldn't resist!), can be found for $70-$100
at anywhere from Toys-R-Us to Wal-Mart. The Power Glove has
an 8 bit processor that watches a special sensor in each of the
fingers and the thumb of the glove, and takes care of tracking
the glove by using an ultrasonic ranging system similar to that
used in today's Polaroid cameras. Basically, it can inform its host
about hand and finger movement with astonishing accuracy.

The more expensive devices have greater
precision and resolution, but for our

purposes the Power Glove is a logical
choice, particularly considering its

price tag.
So, we have the makings of

a very interesting project
inexpensive, readily available,

easy to implement, and lots of
potential. I guess that "inexpen­

sive" is relative, but if you already
have access to a Power Glove it will
only take enough money to buy an

extension cable and a connector,
and if you don't. then the expense

of buying one can easily be justified
to your spouse if you have a Nintendo

video game, especially if you have kids!
If you don 't have kids or a Nintendo

video game then you're on your own. Beg.
In this project we will constluct a

cable that will interface the peculiar Nintendo l
Power Glove plug to the Amiga joystick P011

and write a special program that will read the
port and map the glove 'S movements to regular

mouse movements for intuition. This will allow you
to use the Power Glove with almost any program
that uses the mouse. This is of limited usefulness, of

course, but it shows a little of what is possible using
this technology on the Amiga. Theoretically, the Power
Glove could be used as a method of input for 3-D

graphics or CAD programs, or in conjunction with other
devices could even form the basis of a virtual reality. If
there is enough interest in exploring the possibilities of
this interface , maybe we could go more in-depth and
tackle a larger software project at a later date. For now,

+

DJComputers.cz

let's get the cable built and the Amiga and the Power Glove
talking.

When first considering this project, it seemed that the
most obvious place to interface the Power Glove to the Amiga
was the joystick port (the second port, beside where the mouse
plugs in), if it could be done. The glove requires +5 volts, a
ground, one input line, and two output lines, one for a reset
and one for a clock. As it happens, the power and ground are
available on the joystick port (pins 7 & 8 respectively), as are a
number of input pins. The only possible problem was outputs.

For normal mouse and joystick use, the Amiga doesn't
need any of the pins on the mouse/joystick ports to be used for
output. However, there are two special pins that are normally
used to read analog joysticks that are software-switchable to be
outputs (pins 5 & 9). Because of the way they are used in
reading analog joysticks, these two pins are hooked to large
capacitors. The resistance in the analog joystick regulates how
long it takes for the charge in the capacitors to build up, and by
timing that buildup the Amiga is able to determine the joystick's
position. Because these pins are hooked to capacitors, there
may be a lag of up to 300 microseconds for output to reach the
POlt. Fortunately, one of the outputs we need is not terribly
time-critical the reset line. We can use one of these pins for it.

In addition to these two output pins, the port also has
another software-switch able pin that can be either input or
output (pin 6). Usually it is connected to the left mouse button.
or to the fire button of a joystick. Since this pin is not hooked
up to a capacitor and therefore doesn't have a signal delay, this
pin can be used for the clock line (which needs to be as fast as
possible). If we choose pin 4 for the data input line, then we
can use pins 4-8, with all other pins unused, which makes for a
nice, uncluttered interface specification. Looks like the joystick
port has everything we need. Too bad other computers don't
have such versatile hardware!

This is what you will need to adapt the Power Glove to
the Amiga joystick port:

(l)Extension cable for the Nintendo Game controller
Curtis makes Super Extendo, part #NC-1 available at
Wal-Mart for under $10

(l)Nine position female D-subminiature connector
Radio Shack Cat. # 276-1428 for $1.19

(l)D-subminiature connector hood
Radio Shack Cat. # 276-1539B for $.79

Start by cutting off the end of the cable that would
normally go to the game console (the smaller plug), then
carefully strip off about an inch and a half of the outside layer
of plastic to expose the wires inside. Once you do that, strip
about a quarter inch off each of the exposed wires. The colors
of the wires may vary from cable to cable, so you need to use a
multimeter to check which wire leads to each pin in the plug at
the other end of the cable. Write it all down.

The connector that is listed here does not require any
soldering. The connector package contains a strip that holds all
of the individual metal contacts. One at a time, use a pair of
needle-nose pliers to crimp one of these contacts onto each
wire, then carefully bend the contact back and forth with the
pliers to break it away from the metal strip. The pin numbers
for the connector are embossed onto the plug itself, so once the

contacts has been crimped onto all of the wires, match up each
wire in the cable with the appropriate position on the connector
and push its contact into that hole. You may need to use a
toothpick or something similar to push them firmly into place. If
you are using a solder type connector, just make sure you
solder each wire in the correct position and are careful not to
bridge solder between two pins. Figure one shows the proper
connections.

After completing all of the connections, attach the hood
around the connector to prevent pulling the wires loose. If you
own an Amiga 1000 you may need to modify the plastiC hood a
bit so the connector can be pushed into the port all the way, to
ensure proper connection. Once you have finished, use a
multimeter to recheck all of the connections to make sure
everything is in the right place. While this cable is perfectly safe
to the computer and the glove, any wires out of place could
cause damage to either or both. CHECK YOUR WORK! If you
want to try out this interface but are not a hardware type, you
can find ordering infom1ation at the end of this article. That
completes the hardware part of this project (pretty simple,
huh?).

The Power Glove itself handles the processing of its
hardware into binary information. It has a set of built-in
programs that convelt keypad presses and hand and finger
movements into a stream of data bits. The default built-in Power
Glove program is used in this project, which allows us to use
up, down, left, right, thumb, forefinger, and the Stalt and Select
buttons on the keypad. For emulating a mouse, the main ones
we are interested in are the directional movements for pointer
positioning, and the forefinger and thumb, which we are used
for mouse button events. The keypad buttons are used for
changing the configuration of the program on the fly.

The hardware interface we have constructed makes all of
the physical connections necessary to communicate with the
Power Glove through the Amiga's joystick port. Now all we
need is software that will actually talk with the glove through
the Amiga hardware and convert the data we receive from
binary form into mouse events. We call this program
PowerMouse.

The Power Glove uses a form of serial communication; it
sends a stream of data bits to its host, one bit at a time. Since
the glove has no set clock (baud) rate, in order to receive data
the host must 'poll' the glove it must tell the glove it is ready to
receive the next bit by sending it a signal. The first Lime this is
done, the Amiga sends a 'reset' Signal (pin 5), indicating to the
glove that it is ready to receive the first bit of data, which the
glove then sends. The Amiga then reads its input pin (pin 4) for
this bit. For each of the remaining bits (2-8), the Amiga first
sends a 'clock' signal (pin 6), indicating to the glove to send the
next bit in the data stream. The Amiga then reads its input pin
for these bits, sending a clock signal then reading the input pin
for each one. After all eight bits have been read, the process is
repeated. Each bit represents the state of one of the actions the
glove is monitoring.

The PowerMouse program works by installing a back­
ground task which polls the joystick port and creates
input.device events to simulate mouse movement. The main
process opens a control window and processes IDCMP mes­
sages in standard Amiga fashion. However, when the window is
hidden the main task goes to sleep by "Wait"ing 011 signals,

PREMIERE ISSUE 83

DJC
om
pu
ter
s.c
z

Figure one

2 3 4 000 000
5 6 7

EXTENSION CONNECTOR WIRES

1 2 3 4 5

\°0°0°0°0°/
6 7 8 9

AMIGA CONNECTOR PINS

1 Ground - - - - - - - - -- 8 Ground

2 Clock In (From Computer) - - - --0> 6 Clock Out

3 Reset (From Computer) - - - -> 5 Reset Out

4 Data Out (To Computer) - - - -> 4 Data In

5 +5 Volts --------> 7 +5 Volts

6 & 7 (Not Used)

either from the background task, indicating that the 'SELECT'
button was pressed or the background task failed, or from the
operating system, letting it know that the process received a
break Signal.

For the budding Modula-2 programmer, the PowerMouse
source includes examples of using the the input.device to feed
events to the operating system, using the timer.device to delay
in a system-friendly manner, starting up background tasks and
communicating between tasks using signals, opening windows
which function correctly regardless of the system font, and using
the joystick port for digital input and output. If you are inter­
ested in leaming how the PowerMouse program works, please
read through the source; it is well-commented and should
answer any questions you have. We used M2Sprint but tried to
be as non-compiler specific as possible. You should be able to
make this code work with any dependable Modula-2 compiler
with little modification.

Start the program by typing 'run PowerMouse' at the CLI
prompt or by double-clicking on its icon. The program starts by
bringing up a configuration window which has a number of
gadgets that let you control how the program operates. The first
thing to do after mnning the program is tum off the rapid fire
feature on the glove C'A OFF' and 'B OFF), and press 'SELECT'
to activate the Power Glove. Now make a fist a few times to
calibrate the glove's sensors to the size of your fist. Finally,
press the 'START' button to enable the glove.

Once the program is mnning, you can get rid of the
configuration window by clicking on the Hide gadget or by
pushing the 'SELECT' button on the glove's keypad. Pressing the
'SELECT' button at any time will toggle the configuration
window, from the front to hidden and back. Once the window
has been hidden, if for some reason the glove is not responding
properly, the only way to kill the PowerMouse program is to
send it a control-C using the break command from a eLI (use
the status command to find the right process number), so make
sure the glove is working before hiding the window.

84 AC's TECH

The Enabled gadget toggles glove response. Switching
Enabled on (highlighted) lets the glove function normally, and
tuming it off effectively switches off the glove while letting the
program remain mnning. The Enable function can also be
toggled by using the 'START' button on the glove'S keypad (it
works even if the configuration window is hidden). To stop the
program completely click on the Kill gadget.

The Rate slider sets how often the Amiga polls the glove.
The senSitivity of the glove is directly propOitional to rate
setting, while the effect on the system is inversely propOitional.
The default value should work fine with most machines. but if
you have an accelerator card installed or happen to be lud:y
enough to own a 3000, you may want to set RATE to a lower
number, particularly if you are getting en'atic response.

The Speed slider sets the number of pixels the pointer
moves for each movement event generated by the glove. A
lower number is much easier to control, but the pointer takes
longer to get where you want it to go. The Accelerate gadget
toggles a pointer speed increase mechanism on or off; it is on
by default. Acceleration kicks in if you move constantly in one
direction, and allows you to move quickly from one side of the
screen to the other without losing the ability to do more
detailed movement when necessary. These two gadgets should
be used together to make PowerMouse respond in a manner
which you find comfortable.

If you have any problems with erratic responses that are
not affected by these configuration settings, check to make sure
the rapid fire and slow motion options on the Power Glove are
tumed off (buttons 5, 7, and 9). If you don't get any response at
all, first press 'SELECT' on the Power Glove, and if still nothing
then check your cable it may be wired incorrectly or you may
have a bad connection. If problems perSist, try a higher quality
connector (this would require soldering).

By the way, this interface will also work with other
Nintendo game controllers which have more immediate
potential than the Power Glove. You can use one of those
inexpensive infrared controllers ($20 at Wal-Matt) and have the
(almost) equivalent of a cordless mouse, except you don't need
a flat surface to use it! This is the best way we have found yet
for doing presentations stand back in the middle of the room
and still have complete control of your program.

[Also included on the AC's TECH disk, is a version wbich has a
few extra features. For instance, it is configurablefor keyboard
events as well as mouse events, which allows you to use the glove
with some games that use the keyboard for input. You can use it
to map out different keystroke sequences for each button or
direction of movement, which makes doing presentations or
sitting back and wading through messages online a breeze with
the cordless controller. -Ed]

c

DJComputers.cz

Can I Buy the Interface?
The pre-assembled hardware interface and a distribu­

tion disk containing the latest version of the PowerMouse
program and its source are available for your convenience for
$25. If you order, we will also put your name on a mailing list
to keep you informed of any future development using this
interface for input. Please send a check or money order to the
address below. Make sure all checks are drawn on a U.S bank
for u.s. funds. Please allow 4 to 6 weeks for delivery.

PowerMouse Distribution
c/o Mike Cargal
7857 Crescent Drive
Columbus, GA 31909

MODULE PowerMouse
MODULE PowerMouse:

FROM Glove IMPORT StartGloveTask, SelectSignal,
HaltSignal;

FROM Window
FROM DOS

IMPORT
IMPORT

ControlWindowi
SIGBreakC, SIGBreakD, SIGBreakE,
SIGBreakF:

FROM TasksIMPORT Wait, SignalSet;

(*-------------------------
I
I
I
I
I
I
I
I

PowerMouse

Author:

Date:
Version

Mike Cargal
with Paul King
Aug. 1990
Original

(BIX: mcargal)
(BIX: pking)

I ===
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

First we fire up the background task by calling
StartGloveTask, then we open a control window and
process input from the window.

When the user closes (hides) the control window we come
back here and wait for a signal from the glove task
indicating that (I) something has gone wrong and we
need to terminate (HaltSignal) or (2) the user has
pressed the select button to request the Control
Window (SelectSignal).

'tIe will continue this loop until we receive a
HaltSignal or one of the called procedures issues a
HALT. All cleanup is handled by TERMPROC procedures,
so we can call HALT anytime and anyplace we wish to
abort the program and all resources will be returned
to the system.

\-------------------------*)

VAR
WaitSignalSet

BEGIN
StartGloveTaski
LOOP

ControlWindowi

SignalSeti

WaitSignalSet := Wait (SignalSet{SelectSignal,
Hal tSignal,
SIGBreakC,
SIGBreakD,
SIGBreakE,
SIGBreakF» ;

IF WaitSignalSet ...
SignalSet{HaltSignal,

SIGBreakC,
SIGBreakD,
SIGBreakE,

HALT
END;

END;

END PowerMouse.

SIGBreakF} # SignalSet{} THEN

DEFINITION MODULE Globals
DEFINITION MODULE Globalsi

CONST
RateRange 20i
SpeedRange 6;

VAR
Rate,
Speed
Accelerate,
Enabled

END Globals.

CARDINAL;

BOOLEANi

IMPLEMENTATION MODULE Globals
IMPLEMENTATION MODULE Globals;

BEGIN

Rate := 10;
Speed 3;
Accelerate TRUE;
Enabled :- FALSE;

END Globals.

DEFINITION MODULE Glove
DEFINITION MODULE Glovei

VAR
SelectSignal,
StartSignal,
HaltSignal CARDINAL;

(*--------------------------
I
I These signals are used by the Glove polling task to
I communicate with the main process.
I

PROCEDURE StartGloveTask;

(*,--------------------------
I
I Start up background task to poll the glove.
I
I This will signal the main task if it encounters
I problems allocating the necessary resources. It
I also checks a flag set by the process in the
I TERMPROC to remove itself when the program
I terminates.
I
\,-------------------------*)

END Glove.

IMPLEMENTATION MODULE G10ve
IMPLEMENTATION MODULE Glove;

FROM SYSTEM IMPORT

FROM PotgoResource IMPORT

FROM DOSProcess IMPORT
FROM CIAHardware IMPORT
FROM CustomHardware IMPORT
FROM Resources
FROM Pause
FROM Tasks
FROM Nodes
FROM Memory

FROM Interrupts
FROM Events

IMPORT
IMPORT
IMPORT
H1PORT
IMPORT

IMPORT
IMPORT

SHIFT, TERMPROC, "ONG, ADR,
BYTE, ADDRESS;
PotgoBlts, PotgoBitSet,
PotgoNarne, potgoBase,
AllocFotBits,
Writepotgoi
DelaYi
CIA, CIAA, CIAGameportli
custom, Customi
OpenResourcei

InitPause, EndPause;
TaskPtr, Task, AddTask, RemTaski
NodeType;

FreeMem, MernReqSet,
MemReqsi
Forbid, Permiti
WriteEvent, InitEvents,

FROM Globals
FROM Notify
FROM Tasks

EndEventSi
IMPORT Rate,
IMPORT UhOh;

IMPORT Signal, SignalSet, Current Task,
FindTask, AllocSignal, AnySignal,
FreeSignal, NoSignalsi

(*-------------------------

PREMIERE ISSUE 85

DJC
om
pu
ter
s.c
z

Thanks to Carolyn Scheppner for her article in
AmigaMail "Joystick Port Output". The code to write
to the joystick port is to Modula-2
directly from that article.

-----------*)

CONST
OurBits
PotRXMsk
PotRXClr
PotRXSet
StackSize
Pin4
TaskName

PotgoBitSet{OUTRX,DATRX};
PotgoBitSet{OUTRX,DATRX};
PotgoBitSet{OUTRX};
PotgoBitSet{OUTRX,DATRX}:
4000;
0;
"PowerMouse Background Task";

TYPE
GloveBits (GloveA,

GloveB,
GloveSelect I

GloveStart,
GloveUp,
GloveDown,
GloveLeft,
GloveRight);

GloveJl..rray

My':'askRec

[MIN (GloveBits) ..
OF BOOLEAN;

RECORD
task Task;
stack ARRAY [O .. StackSize-l] OF BYTE;

END;

VAR
GloveArray;

MasterProcess TaskPtr;
OurPotBits
MyTask POINTER TO MyTaskRec;
SelectButton,
StartButton,
Halting,
HaltOK : BOOLEAN;

(* =- =-=- =-=-= - = - =- =- =- = - =- = - = - =- =-=- =- =-=-=- =-=- =-=-::::-=-:::: *)

PROCEDURE StrobeReset();

(*---------------------------
I
I Sends a H-L pulse to pin 5 on the joystick port.
I This resets the glove for the next set of 8 bits.
I
\-------------------------*)

BEGIN
Wri tepotgo (PotRXSet, PotRXMsk) ; (* Set Pin high *)

WritePotgo (PotRXClr,PotRXMsk); (* Set Pin low *)
END StrobeReset;

(* =-=-=-=-=-::::-=-::-=-=-=- =-=- =- :::-=-=-=-:::-=-:-=-=-=-=-=-:::-= *)

PROCEDURE StroDeData();

(*---------------------------
I
! Sends a H-:S-E-:
! This signals
I bit data set.

to pin 6 of the joystick port.
glove to send the next bit in the

I
\-----------------*)

BEGIN
EXCL(CIAA ciapra,CIAGamePortl); ('II Set Pin low'll)
INCL(CIAA ciapra,CIAGamePortl); ('II Set Pin high X)

EN!) StrcbeData;

(* =-=-=-=- =-=*)

PROCEDURE PollGlove{);

{*---------------------------
I
I Loop through, reading each of the data bits from the
I glove (one a time) on pin 4 of the joystick

port. After 8 bits are read the data is
iDterpreted and the appropriate action is taken.

---------------------------*)

VAR
i GloveBits;

BEGIN

FOR i ;= M:i:N(GloveBits) TO MAX(GloveBits) DO
State[i] := (Pin4 IN BITSET(custom".joyldat));
StrobeData;

END;

86 AC's TECH

IF Enabled THEN
WriteEvent(State [GloveLeft],

State [GloveRight. J I

State [GloveUp],
State[GloveDown],
State [GloveBJ I

State [GloveA])
END;

IF State [GloveSelect] THEN
IF NOT Select Button THEN

Signal (MasterProcess, Signal Set {SelectSignal}) ;
SelectButton TRUE

END
ELSE

SelectButton := FALSE
END;

IF State [GloveStart] THEN
IF NOT StartButton THEN

Enabled := NOT Enabled:

StartButton : = TRUE;
END

ELSE
StartButton :; FALSE

END;

PauseMicros ((21 - Rate) * 2500);

StrobeReset;

END PollGlove;

(* =_=_=_=_=_=_=_= _=_ =_ =_=_ =_=_ =_ =_ c_=_= ___ .. _ .. _ ... ___ =_ =_=_= *)

PROCEDURE GloveTask () ;
BEGIN

IF InitEvents() AND InitPause() THEN
StrobeReset;
REPEAT

PollGlove
UNTIL Halting;
EndEvents;
EndPause;

ELSE
Signal (MasterProcess, SignalSet {Hal tSignal})

END;
Forbid;

HaltOK :; TRUE;
RemTask (Current Task) ;

END GloveTask;

(* =-=-=-=-=-=- =- =- =-=- =-=- =-=-::::-=-::::- =- =-=-=-=-=-=-=-=-=-= *)

PROCEDURE StartGloveTask;

BEGIN

PotgoBase :; OpenResource{ADR{PotgoName»;
IF PotgoBase ::: NIL THEN

UhOh("Can't open potgo resource");
HALT;

END;

(* allocate Pin 5 for our use *)
OurPotBits := AllocPotBits<OurBits);
IF OurPotBits * OurBits THEN

UhOh ("Can't allocate potbits");
HALT;

END;

(* Set Pin 6 to output "')
INCL (ClAA". ciaddra, CIAGamePortl) ;

MasterProcess := FindTask(CurrentTask);
SelectSiqnal := AllocSignal(AnySignal);
StartSignal := AllocSignal (AnySignal);
HaltSignal :; AllocSignal {AnySignal) ;
IF (SelectSignal ; CARDINAL {NoSignals») OR

(StartSignal CARDINAL (NoSignals)) OF
(HaltSignal CAHDINAL (NoSignc.ls)) THSf-i
UhOh ("Could not get signals");
HALT

END;

MyTask := AllocMem(SIZE (MyTaskRec),
MemReqSet {MemClear, l-temPublic}) ;

IF MyTask ; NIL THEN
UhOh("Could not start up background task");
HALT

END;
HaltOK :; FALSE;
WITH MyTask' task DO

tcSPLower ADR(MyTaskA.stack);
tcSPUpper tcSPLower + ADDRESS{StackSize};
tcSPReg tcSPUpper;

<

DJComputers.cz

Ii

WITH teNode DO
InType := NTTask;
lnPri := BYTE(5);
InName := ADR(TaskName);

END;
END;
AddTask(ADR{MyTaskA.task),ADR(GloveTask),NIL);

END StartGloveTask;

(*=-=*)

PROCEDURE CleanUp();
BEGIN

IF MyTask # NIL THEN
Halting := TRUE;
REPEAT

Delay(20);
UNTIL HaltOK;
FreeMem(MyTask,SIZE(MyTaskRec)};
MyTask : = NIL;

END;

r, SelectSignal • CARDINAL (NoSignals) THEN
FreeSignal(SelectSlgnal);
Select Signal := CARDINAL (NoSignals)

END;
IF Start Signal t CARDINAL (NoSignals) THEN

FreeSignal(StartSignal);
StartSignal := CARDINAL (NoSignals)

END;
IF HaltSignal # CARDINAL INoSignals) THEN

FreeSignal(HaltSignal);
HaltSignal := CARDINALINoSignals)

END;

IF OurPotBits # PotgoBitSet{) THEN
WritePotgo(PotRXClr,PotRXMsk); (* Set Pin 5 back low *)
FreePotBits(OurPot5its);
OurPotBits := PotgoBitSet{}

END;
EXCL (elM A . ciapra, CIAGamePort 1) ; (* Set P in low *)
EXCL(CrJ>..AA.ciaddra,CIAGamePortl); (* Set Pin to Input *)

ENO CleanUp;

(</< ... _=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_ =_ =_=_=_=_=_=_=_::c: *)

BEGIN
IF FincTask(ADR(TaskName)) # NIL THEN

UhO!'. ("PowoerMouse is already running");
EALT

E};D;
SelectButton := FALSE;
St.artButton := FALSE;
Halting :- FALSE;
HaltOK := TRUE;
MyTask := NIL;

TERMPROC(CleanUp);

END Glove.

DEFINITION MODULE Events
DEFINITION MODULE Events;

PROCEDURE WriteEvent (left,
right,
up,
down,
Ibutton ,
rbutton BOOLEAN);

(*---------------------------
I
I Send an InputEvent to the input.device to simulate
I mouse input.
I
I We just need to know the current state of the glove
I signals and will track changes (button up or down,
I acceleration etc.) internally.
I
I
\-------------------------*)

PROCEDURE InitEvents I) BOOLEAN;

(*---------------------------
I
I Allocate the resources necessary to send InputEvents
I to the input.device.
I
! This code must be called from within the task which
I will be calling WriteEvent. This is why it is not
I just part of the startup for this module.
I
I

-------------------------*)
PROCEDURE EndEvents ();

(*--------------------------
I
! Free the resources allocated by
I
I This code should also be called from with the task
I which has been calling WriteEvents, and
I therefore be set up as a
I
\-------------------------*)

END Events.

IMPLEMENTATION MODULE Events
IMPLEMENTATION MODULE Events;

FROM SYSTEM

FROM Devices
FROM 10

FROM IOUtHs
FROM Ports
FROM PortUtils
FROM InputEvents

FROM InputDevice
FROM TermOut
FROM Notify
FROM Globals

CONST

IMPORT

IMPORT
IMPORT

IMPORT
IMPORT
IMPORT
IMPORT

IMPORT
IMPORT
IMPORT
IMPORT

BYTE, ADR, SAVEREGS, ADDRESS,
REGISTER, LOADREGS;
OpenDevlce, CloseDevice;
IOStdReq, IOStdReqPtr, 0010,
IOFlagSet, SendIO, WaitIO,
AbortIO;
CreateStdIO, DeleteStdIO;
MsgPortPtr, MsgPort;
CreatePort, DeletePort;
InputEvent, IEQualifiers,
IEQualifierSet, IEClass,
InputEventPtr, IECodeNoButton,
IECodeLButton, IECodeRButton,
IECodeUpPrefix;

InputDeviceName;
WriteString;
UhOh;
Speed, Accelerate;

AccelerationBreakOver = 5:

TYPE
Direction = (Up, Down, Left, Right);

VAR
Outstanding I

InputDevIsOpen
Req
IE
MyPort
InputReq
LeftButton,
RightButton
i
Spd

Times

Going

BOOLEF.N;
IOStdReqPtr;
InputEvent;
MsgPortPtr;
IOStdReqPtr;

BOOLEAN;
CARDINAL;
ARRAY
[MIN (Direction) .. MAX (Direction)]
OF INTEGER;
ARRAY
[MIN (Direction) .. [\-lAX (Direction) J
OF CARDINAL;
ARRAY
[MIN(Direction) .. HAX(Direction) J
OF BOOLEAN;

(* ::-=-=-=-=-=-=-=-=-Q-=-=-=-=-=-=-=- =- =-=-=-=-=- =:.- =-=- ;;;-= *)

PROCEDURE Accel (VAR move INTEGER;
act i ve BOOLEAN;

dir Direction);

(*--------------------------
I
I Increases mouse speed when direction is received
I continuously.
I
\-------------------------*)

BEGIN
IF active THEN

IF Going [dir] THEN
INC (Times [dirJ) ;
IE T1mes[d1r] - AccelerationBreakOver THEN

INC (Spd[dir) ,Speed) ;
Times [dir) := 0

END
ELSE

Going [dir) : = TRUE;
Times {dir) := 0;
Spd[dir) := Speed;

END;
IF (dir = Up) OR (dir Left) THEN

DEC(move,Spd[dir)
ELSE

INC (move, Spd [dir])
END

ELSE

PREMIERE ISSUE 87

DJC
om
pu
ter
s.c
z

Going [dir!
END;

END Accel;

(* "-"-"-"-"-"-"-"-"-" *)

PROCEDURE WriteEvent(left,
right,
up,
down,
lbutton
rbutton BOOLEAN) ;

VAR
Dolt
res

BEGIN

BOOLEAN;
INTEGER;

IF (left AND right) OR (up AND down) THEN
RETURN

END;

IF Outstanding THEN
res := WaitIO(Req)

END;

Dolt := FALSE;
WITH IE DO

ieCode IECodeNoButton;
ieQualifier : = IEQualifierSet {IEQualifierRelati veMouse};
ieClass := IEClassRawMousei

:= BYTE(O);
':'eX :"" Oi
ieY : "" 0;

IF lbutton THEN

IF NOT LeftButton '!'SEN
Dolt : = TRUEi
ieCode IECodeLButton;
LeftButton := TRUE;

ELSE
END;

ELSE
IF LeftButton THEN

Dolt := TRUE;
ieCode IECodeUpPrefix+IECodeLButtoni
LeftButton FALSE;

END
END;

IF rbutton THEN
INCL (ieQualifier, IEQualifierRButton);
IF NOT RightButton THEN

Dolt := TRUE;
ieCode := IECodeRButton;
RightButton := TRUE;

END;
ELSE

IF RightButton THEN
Dolt :" TRUE;
ieCode := IECodeUpPrefix+IECodeRButton;
RightButton

END
END;

IF Accelerate THEN
Accel(ieX,left, Left);
Accel(ieX,right,Right);
Accel(ieY,up, Up);
Accel(ieY,down, Down):

ELSE
IF left THEN DEC (ieX, Speed)
IF right THEN INC (ieX, Speed)
IF up THEN DEC (ieY, Speed)
IF down THEN INC (leY, Speed)

END;

IF (ieX # 0) OR (ieY • 0) THEN
Dolt := TRUE;

END;

END;

IF Dolt THEN
SendlO (Req) ;
Outstanding := TRUE;

END;

END WriteEvent;

END
END
END
END

(*::: -::: -::: - = -::: - =- =-=_=_=_=_=_ =_=_=_=_=_=_ =- =_= _ =_ 0::; _ =_:..:_= _ =_ = *)

PROCEDURE !nitEvents () : BOOLEAN;

BEGIN
MyPort := CreatePort (NIL, 0);

88 AC's TECH

Req : = CreateStdIO (MyPort) ;
IF Req NIL THEN

RETURN FALSE
END;

WITH Req" DO
ioCommand
ioLength
ioData

INDWriteEvent;
:= SIZE (InputEvent);

ADR(IE) ;
END;

WITH IE DO
ieNextEvent
ieEventAddress
ieTimeStamp.tvSecs
ieTimeStamp.tvMicro

END;

:=
:=
:=
:=

NIL;
NIL;
0;
0;

IF OpenDevice(ADR(InputDeviceName),O,Req,LONGBITSET{))
0 THEN

RETURN FALSE
END;
InputDevIsOpen :- TRUE;

RETURN TRUE

END InitEvents:

(*" =-=- =-=-= -=- =-=- =- =-=- =-:::-=-:::- =-=-=- ""-._a_=_=_ =_ :0::_=_""_" *")

PROCEDURE EndEvents;

VAR
res : INTEGER;

BEGIN
IF Outstanding THEN

res := WaitIO (Req);
Outstanding := FALSE

END;

IF InputDevIsOpen THEN
CloseDevice (Req) ;
InputDevIsOpen := FALSE;

END;

IF Req # NIL THEN
DeleteStdIO(Req);
Req := NIL

END;

IF MyPort # NIL THEN
DeletePort(MyPort);
MyPort := NIL

ENDi

END EndEvents;

(*"=-=-=-=-= - =-=- =-=-=- =-=-= - =-= - =-=-=-=-=-::-=- =-=- = -=-=- ... *")

BEGIN
MyPort := NIL;
Req := NIL;
Input.DevIsOpen : = FALSE;
Outst:.anding := FALSE;
RightButton :::: FALSE;
LeftButton FALSE;

END Events.

DEFINITION MODULE Window
DEFINITION MODULE Window;

PROCEDURE ControlWindow;

(*--------------------------
I
I Open a control window, adjusting for the system font
I and falling back to Topaz 8 if the default is too
I large.
I
I
I
I
I
I
I
I
I

When we open the window we will loop waiting for
signals from the background task messages from
the window's IDCMP.

This routine returns to the caller whenever the
window is closed, and calls HALT whenever the user
clicks on the Kill gadget.

\------------")

END Window.

DJComputers.cz

"

IMPLEMENTATION MODULE Window
H1PLEMENTATION MODULE Window;

SYSTEM

FROM Intuition

FROM Memory
FROM Text

FROH Ports
FROM Interrupts

Pens
FROM Rasters
FROM Conversions
FROM Notify
FROM Globals

FROM Glove
FROM Tasks

IMPORT ADR, BYTE, STRPTR, ADDRESS, LONG,
TERME'ROC, SHORT;

IMPORT Screen, NewWindow, !,HndoVl,
OpenWindow, ReportMouse,
GetScreenData, NewModifyProp,
AddGList, PrintIText, FreeRemember,
AlloCRemember, RememberPtr,
WindcwFlags, 'ir':ir:.dowFlagSet, Gadget,

BoolGadget, PropGadget,
.l\cti vationFlags, Activati onFlagSe'C,
GadgetFlags, GadgetFlagSet,
GadgHComp, IntuiMessage,
IntuiMessagePtr, IDCMPFlags,
IDCMPFlagSet, Border,
IntuiText, IntuiTextPtr,
Prop:nfoPtr, ?ropFlagSet,PropFlags,
WindowPtr, IntuiTextLength,
ItVBenchScreen, ScreenPtr,
NewWindowPtr, MaxXPot, MaxBody,
Image, ImagePtr, AddGadget,
RemoveGadget, RefreshGList,
WBenchToFront;

IMPORT MemReqs, MemReqSet;
IMPORT TextAttr, TextAttrPtr, TextFont,

TextFontPtr, OpenFcnt, CloseFont,
FontFlags, FontFlagSet,NormalStyle;

IMPORT GetMsg, ReplyMsg, WaitPort;
IMPORT Forbid, Perrr.i::-.;
IMPORT SetAPen, RectFill;
IMPORT Jaml, Jam2;
IMPORT ConvNumToStr, Dec;
IMPORT UhOh;
IMPORT Rate, RateRange, Speed, SpeedRange,

Accelerate, Enabled;
IMPORT SelectSignal, StartSignal, HaltSignal;
IMPORT SignalSet, Wait:

CaNST
Default
FallBack TRUE;

VAR
wp NindowPtr;
RateGadget,
SpeedGadget,
AccelerateGadget,
EnabledGadget,
HideGadget,
KillGadget
MainRemem
DefFont

GadgetPtr;
RememberPtr;
TextFontPtr;

RateIT,
SpeedIT
DefTextAttr
FirstSelect

IntuiTextPtr:
TextAttr;
BOOLEAN;

(*=-=*)

PROCEDURE ScaleAndOpenWindow (FallingBack BOOLEAN):
BOOLEAN;

«---------------------------
I
I Determine the size window and gadgets necessary to
I accomodate the default system font (FallingBack
I FALSE). If the default font is too large to
I accomodate, this routine will call itself
I recursively specifying the it should attempt to fall
I back to Topaz 8 (FallingBack = TRUE) .
I
I It returns TRUE to indicate that has successfully
I opened the control window, or FALSE to indicate that
I is was unable, for some =eason, to open even a
I window with the fallback font.

---------------------------*)

CONST
AccelerateText
EnabledTe:-:t "Enabled";

\\Hide ll ;

KillText "KillH;
RateText "Rate ".
SpeedText "Speed ".

VAR
DefRect

si
nw
ScaleRemem
N':r.dowX,
h'indowY

RECORD
x, y : INTEGER;

END;
Screen1?tr;
NewWindowPtr:
RememberPtr;

FirstGadget : BOOLEAN;

(*=-=')

PROCEDURE least (a,b : INTEGER) : INTEGER;
BEGIN

IF a < b THEN
RETURN a

END;
RETURK b

END least:

(* =_::::_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_ =_ =_ =-;;0-=-=-=-=-= *)

PROCEDURE greatest (a,b : : INTEGER;
BEGIN

IF a > b THEN
RETUfu\I a

END;
RETURN b

END greatest;

(*=-=-=-=-=-=-=-=-=-=-=-=- =- =-=-=- =-=-=-=-=-=-=-=-=-=-= '*)

PROCEDURE ScaleBox (str : STRPTR);

(*-------------
I
I This routine will calculate the size of a recta:1g1e
I to enclose "strH. It will then expand :he size cf i
I DefRect if either the x or y size is greater chan
I the DefRect so far.
I
I After this routine has been called f.::r all
I DefRect will contain the :-: and y Sl.ze necessary to
I hold the largest string passed for the DefFcnt.

-----------')

VAR
IT : IntuiText;
SX,5y,

len : INTEGER:

BEGIN
(* Height of font plus pixels top & bottom *)
sy ::::: DefFont".tfYSize + 16;

WITH IT DO
!TextFont := ADR(DefTextAttr);
IText str;

END;

(* Width of text plus 8 pixels left and right *)

sx := IntuiTextLength(ADR(IT» + 16;

WITH DefRect DO
x := greatest (x, sx);
y : = greatest (y, sy)

END
END ScaleBox;

(*=-=-=-=-=-=-=-=-=-=-=-=- =- =- =-=-=- =-=-=-=-=-=-=- =-=-=*)

PROCEDURE AddBui: t on (x, y
label
toggle
selected
next gad

INTEGER;
STR?7Ri
BOOLEA.r-.t:
BCOI.,EAN:
GadgetPtr) GadgetPtr:

«------------------------
I
I Allocate a boolean gadgeL with the label centered in
I a box sized to fit in a DefRect.
I
I IX' and I y ' are the rectangle coordinates.
I
I 'labe::" is the text to use for the button.

'toggle' indicates that the gadegt should be
ToggleSelect if TRUE.

'selected' indicates whether or not the gadget
should come up in a selected state.

'nextgad' is a pointer to the gadget with which this
one shoulb be linked. NIL is valid only for the
first gadget created. If NIL is received
thereafter is indicates that an error has occured
in earlier allocations, so we just return NIL to
pass the error condition on.

-------------*)

TYPE
But':on RECORD

gad
it
boed
coord

END:

Gadget:
IntuiText;
SOl"der;
A?ZRA.Y [0 •. 9], (G •• 1] OF :;:NTEGER;

PREMIERE ISSUE 89

DJC
om
pu
ter
s.c
z

ButtonPtr = POINTER TO Button;

VAR
bp : ButtonPtr;

BEGIN
IF next gad = NIL THEN

IF FirstGadget THEN
FirstGadget FALSE

ELSE
RETURN NIL

END
END;

bp : = AllocRemember (MainRemem,
SIZE (Button) ,
MemReqSet{MemPublic,MemClear»;

IF bp - NIL THEN
RETURN NIL

END;

:- nextgad;

WITH bp' DO
WITH gad DO

NextGadget
LeftEdge := VAL(INTEGER,siA.WBorLeft) +

(x - DefRect.x) + 5;
TopEdge := +

Width :=

+
(y • DefRect.y) + 5;
DefRect.:' - 10;

Height := DefRect.y - 10;
Flags := GadgHComp;
IF selected THEN

INCL(Flags, Selected)
END;
Activation := ActivationFlagSet{RelVerify};
IF toggle THEN

INCL(Activation,ToggleSelect);
END;
GadgetType := BoolGadget;
GadgetRenderB : = ADR (bord) ;
GadgetText :- ADR(it);

END;

WITH bord DO
LeftEdge := 0;
TopEdge := 0;
FrontPen : = BYTE (1) ;
DrawMode : = Jaml;
Count : = BYTE (10);
XY := ADR(coord);

END;

coord[O,O]
coord{l,O]
coord[2,0]
coord[3,0]
coord[4,0]
coord[S,O]
coord[6,0]
coord[7,0]
coord[8,0]
coord[9,0]

:- -2;
:= gad. Width
:= gad. Width
:= gad. Width;
:- gad.Width;
:- gad.Width;
:- -2;
:= -2;
:= -1;
:= -1;

:= BYTE (1);
Jaml;
3;

+
+

coord{O,l]
l;eoord[l,l]
1;coord{2,1]

eoord[3,1]
coord[l,l]
coord[5,1]
coord[6,1]
coord [7,1)
eoord[8,1]
eoord[9,1]

WITH it DO
FrontPen
DrawMode
TopEdge
ITextFont
IText

: = ADR (DefTe:<tAttr) ;
:= label;

END;

- -1;
-1;
gad.Height;

- gad.Height;
;= -1;
:= gad.Height;
:= gad.Height;
:= -1;
:= -1;
:= gad. Height;

it. LeftEdge := «DefRect.x - 10) DIV 2) -
(INTEGER (IntuiTextLength (ADR(it»)
DIV 2);

RETURN ADR(gad);
END;

END AddButton;

(*=_=_=_=_=_=_=_=_=_=_=_=_c_= ___________

PROCEDURE AddS1ider(y.,y
value,

INTEGER;

range CARDINAL;
nextgad GadgetPtr) Gadgetptr;

(.------------------------
I
I Add a proportional gadget in the same manner as
I AddButton added a Boolean gadget.
I
I
I
I
I
I
I
I

'valt:e' indicates the current value of the variable
to be adjusted by this proportional gadget.

'range' indicates the range of possible values for
the variable to be adjusted by this porportional
gadget.

90 AC'sTECH

'nextgad' (see AddButton)

------------------------.)
TYPE

Slider RECORD
gad
pi
im

Gadget;
PropInfo;
Image

END;
SliderPtr = POINTER TO Slider;

VAR
sp SliderPtr;
hp CARDINAL;
lc LONGCARD;

BEGIN
IF nextgad = NIL THEN

IF FirstGadget THEN
FirstGadget : = FALSE

ELSE
RETUR..'1 NIL

END
END;

sp : = AllocRemember (MainRemem,
SIZE (Slider),
MemReqSet {MemPublic, l'o1emClear}) ;

IF sp = NIL THEN
RETURN NIL

END;

WITH SpA DO
WITH gad DO

NextGadget
LeftEdge

TopEdge

Width
Height
Flags
Activation

GadgetType
GadgetRenderI
GadgetText
SpeeialInfo

END;

;= nextgad;
:= VAL(INTEGER,siA.WBorLeft) +

(x • DefRect. x) + 3;
:- +

VAL(INTEGER,si'.BarHeight) +
(y • DefReet.y) + 4;

:- DefRect.x - 7;
:= DefRect.y - 8;
: = GadgHComp;
:- ActivationFlagSet{GadgImmediate,

FollowMouse} ;
:- PropGadget;
:- ADR(im);
:= NIL;
:= ADR(pi);

IIITH pi DO
Flags :- PropFlagSee{AutoKnob,FreeHoriz};

LONGCARD (LONGCARD (va1ue-1) * DIV
LONGCARD(range-l);

1c :=

HorizPot : = le;
VertPot : = OFFFFH;
HorlzBody := MaxBody DIV range;
VertBody :- OFFFFH;

END;

RETURN ADR(gad);
END;

END AddSlider;

(_=_=_=_=_=_=_=_=_=_=_=_=_Z_=_=_=_=_=_=_Q_=_=_=_=_= ___

PROCEDURE AddLabel (wp
x,y
str
value,

WindowPtr;
INTEGER;
STRPTR;

chars : CARDINAL)

(*------------------------
I

IntuiTextPtr

I Add an IntuiText label within a DefRect, passing
I back an IntuiTextPtr to an IntuiText structure for
I updating the value as the slider is manipulated.
I
\------------------------.)
TYPE

Labe 1 • RECORD
it IntuiText;
buf : ARRAY (0 •• 10] OF CHAR;

END;
LabelPtr = POINTER TO Label;

VAR
Ip : LabelPtr;

BEGIN
lp : = AllocRemember (MainRemem,

SIZE (Label) ,

IF Ip = NIL THEN
RETURN NIL;

MemReqSet (MemPubl ie, MemClear)) ;

DJComputers.cz

II

END;

WITH Ip" DO
vliTH it DO

FrontPen
DrawMode
LeftEdge

Top Edge

ITextFont
ITezt

END;

BYTE (1);
Jaml;
VAL(INTEGER,si'.WBorLeft) +
(DefRect. x '* x) + 9;

:=
VAL(INTEGER,siA.BarHeight) +
(DefRect.y * y) + B:

:= ADR(DefTextAttr):
:= str;

2::-int:::Tezt (wp" . R?ort,.!!..DR (it) I 0, 0);

INC(it.LeftEdge,IntuiTextLength(ADR(it)));

WI':'H it
IText : = ADR (buf);
Dra"wMode :::: Jaml;

END;
IF ConvNumToStr(it.IText A ,

LONG (value) ,
Dec,FALSE,2,H ") THEN

END;

RETURN ADR (it) ;
END;

END AddLabel;

(*=-=-=-=-=-=-=-=-=-=-=---:-=-=-=-=-=-=-=-=-=-=-=-----=*)

PROCEDURE FreeStuff;

BEGIN
IF DefFont # NIL THEN

DefFont := NIL;
END:

IF ScaleRemem # NIL TnEN
FreeRemember(ScaleRemem,TRUE);
ScaleRemem NIL

EnG;

IF MalnRemem * NIL THEN
FreeRemember(MainRemem,TRUE);
MainRemem := NIL

EtJD;

END FreeStuffi

PROCEDURE TryFallBack () :

BEGIN
E'reeStuff;

IF FallingBack THEN
RETURN FALSE

END;

RETURN ScaleAndOpenWindow(FallBack)

END Tr"jrallBac/<.;

BEGIN
ScaleRemem := NIL;

:= AllocRemember(ScaleRemem,
SIZE (Sc,:-een) ,
l1emReqSet (MemClear J) ;

IF (si = NIL) OR
(NOT GetScreenData (si,

SIZE (Screen) ,
WBenchScreen, NIL» THEN

FreeStuff;
RETURN FP.LSE

END;

IF NOT FallingBack THEN
Forbid;

WITH siA.FontA DO
DefTextAttr.taName := taName;
DefTextAttr.taYSize := taYSize;
DefTextAttr.taStyle := taStylei
DefTextAttr.taFlags := taFlags;

END;
DefFont := OpenFont(ADR(DefTextAtcr»);

Permit;
ELSE

WITH DefTextAttr DO

taName := ADR("topaz.fo:1t");
taYSize 8;
taStyle := NormalStylei
taFlags := FontFlagSet{ROMFont}

END;
DefFont := OpenFont(ADR(DefTextAttr));

END;
IF DefFont = NIL THEN

RETURN TryFallBack. ()
END;

WITH DefRect DO
X := 0;
y := 0;

END;

ScaleBox (ADR (Accelerate'I'ext)) ;
Sca!eBox (ADR (EnabledTe:<t)) ;
Sca!eBox (ADR) ;
ScaleBox(ADR(KillText)) ;

FirstGadget TRUE;
RateGadget AddSlider (0,1,

Rate,RateRange,
NIL) ;

SpeedGadget := AddSlider (0,3,
Speed,SpeedRange,
RateGadget);

AccelerateGadget := AddButton(l,O,
ADR(AccelerateTextl,
TRUE, Accelerate,
SpeedGadget);

EnabledGadget := AddButton (1,1,

TRUE, Enabled,

HideGadget := AddButton(1,2,
ADR (HideText) ,
FALSE, FALSE,
EnabledGadget);

KillGadget := AddButton (1, 3,
ADR(KL.ITextl,
FALSE,FALSE,
HideGodget):

IF KillGadget = NIL THeN
RETURN TryFallBC'4ck () "

END;

ow := AllocRemember (Scalei\E:F.lem,
SIZE (NewWindo'd),
MemReqSet{MemClear})i

IF mo: = NI!.. ':'HEN
RBTURN TryFallBack ()

END;

WITH si" DO
WindowX := (DefRect.x * 2) +

VAL(INTEGER,WBorLeft) +
VAL(INTEGER,WBorRight);

WindowY := (DefRect.y • 4) +

END;

WITH nw" DO
LeftEdge

TopEdge

Width
Height

(*DetailPen
BlockPen
IDCMPFlags

Flags

F irstGadget
Title

(*Screen
Type

END;

VAL {INTEGER, BarHeight) +
VAL (INTEGER, WBorTop) +
VAL (INTEGER, WBor-Bottom) ;

:= least «320
((si".Width DIV 2)

:= least «200
((siA.Heigl"lt DIV 2)

WindowXi
:= WindowY;

- (WindowX

- (WindowX
- (WindowY
- (WindowY

; = EYTE (0); Done by 1':emClear "')
:= BYTE(l);

!DCMPFlagSet{MouseMove,
GadgetUp,
GadgetDo",:-.) ;

WindowFlagSet{WindowDrag,
WindowOepth} ;

:= KillGadget;
ADR("PowerMouse") ;

:= NIL; Done by MemClear *)
: = vJBenchScreeni

wp : = OpenWindow (nw) ;

IF wp = NIL THEN
RETURN TryFallBack ()

ELSE

DIV
DIV
DIV
DIV

2)) ,
2))) ;
2)) ,

2))) ;

RateIT AddLabel(wp,O,O,ADR(RateText),Rate,2);
SpeedIT :; AddLabel(wp,O,2,ADR(SpeedText),Speed,2);
FreeRemember(ScaleRemem,TRUE);
ScaleRemem : = NIL:
RETURN TRUE

END

END ScaleAndOpenWindow;

PREMIERE ISSUE 91

DJC
om
pu
ter
s.c
z

('" =-=-;- =-=-=-=-=-=-=-=-=-""-=-=-=-=-=-=-;-=-=-=-=-=-=-=-=*)

PROCEDURE ProcessSlider(VAR value; CARDINAL:

VAR
OldVal
lc

CARDINAL;
LONGCARD;

:= value;

gad GadgetPtr;
range CARDINAL;
it : IntuiTextPtr);

BEGIN
OldVal
Ie (LONGCARD(range-l)

* LONGCARD (gad". SpeciallnfoP" .HorizPot) +8000H)
DIV MaxX?ot i

value SHORT(lc+l):
IF value # OldVal THEN

:= BYTE(O);
PrintIText (wp" .RPort, it, 0, 0);
it".FrontPen := BYTE(l);
IF ConvNumToStr{it".IText",

LONG (value) ,
Dec,FALSE,2," ") THEN

PrintIText (wp" .RPort, it, 0, 0);
EtiD

END;
END ProcessSlider:

(* =-=-=-=- =-=- =- = -= - =- =-= - =-=-=- =-=-=-=-=-=-=-=-=-=-=-=-= *)

PROCEDURE HandleStartSignali

VAR
posn : INTEGER;

BEGIN

posn :- RemoveGadget(wp,EnabledGadget):
IF Enabled THEN

lNC'L (EnabledGadget" , Flags, Selected)
ELSE

EXCL (EnabledGadgec',Flags, Seleeted)
END;
SetAPen(wpA.RPort,O):
WITH EnabledGadget' DO

RectFill(wpA.RPort,
LeftEdge,
TopEdge,
LeftEdge+width-l,
TopEdge+Height-l)

END;
posn AddGadget(wp,EnabledGadget,posn);
RefreshGList(EnabledGadget,wp,NIL,l);

END HandleStartSignal:

(*=_=_=_=_=_=_=_=_=_=_=_=_=_=_ =_=_=_=_=_=_::s::_==_::::_,*_=_=_=_=*)

?ROCEDURE CleanUp;

BEGIN
IF wp t NIL THEN

CloseWindow(wp);
wp NIL;

END;

IF DefFont # NIL THEN
CleseFont(DefFont)i
DefFonC : = NIL;

ENIl;

FreeRernember (MainRemem, TRUE) ;
MainRemem := NIL;

END CleanUp:

(... =_ = -= - = _=_=_=_ =_=_=_=_=_=_=_=_ =_ =_=_=_ =_ =_ =_ = -=_=_=_=_ = 'It)

PROCEDURE ControlWindow;

VAR
im
cIs
gad
Done
MouseI>1oved
WaitSignalSet

BEGIN

IntuiMessagePtr;
IDCMPF lag Set ;
GadgetPtr:
BOOLEAN;
BOOLEAN;
S1gnalSet:

IF NOT ScaleAndOpenWindow(Default) THEN
UhOh("Unable to open Control window!!"):
HALT;

ENO;

IF NOT WBenchToFront() THEN
CleanUp:
RETURN

END;

92 AC's TECH

Done : = FALSE;
MouseMoved := FALSE;
REPEAT

WaitSignalSet :=

IF HaltSignal
HALT

END;

Wai t (SignalSet {SelectSignal,
StartSignal,
HaltSignal,

CARDINJl..L (wp". UserPort" .mpSigBit) }) ;
IN WaitSignalSet

IF StartSignal IN WaitSignalSet THEN
HandleStartSignal;

END;
IF SelectSignal IN WaitSigr.alSet THEN

IF NOT FirstSelect THEN
Done := TRUE

ELSE
FirstSelect := FALSE

END
END;
im := GetMsg(wp".UserPort);
WHILE (im # NIL) AND (NOT Done) DO

nITH im" DO
cIs : = Class:
gad := IAddressG

END;
ReplyMsg (im);

IF (GadgetDown IN cls) OR (MouseMove cls) THEN
MouseMoved := TRUE

END;
IF GadgetUp IN cIs THEN

IF gad - KillGadget THEN
HALT

ELSIF gad = HideGadget THEN
Done TRUE

ELSIF gad = AccelerateGadget THEN
Accelerate := NOT Accelerate

ELSIF gad - EnabledGadget THEK
Enabled := NOT Enabled

END;
END;
IF NOT Done THEN

im := GetMsg(wp",UserPort)
END;

END;
IF (NOT Done) AND MouseMoved THEN

ProcessSlider(Rate, RateGadget, RateRange, RateIT);

MouseMoved FALSE;
END;

UNTIL Done;
CleanUp;

END ControHHndoi'i;

(')

BEGIN

wp := NIL;
MainRemem := NIL;
DefFont :- NIL;
FirstSelect :- TRUE;

TERMPROC (CleanUp) ;

END Window,

DEFINITION MODULE Pause
DEFINITION MODULE Pause;

PROCEDURE PauseMicros (i : LONGCARD);

(*-------------
I
I Use the timer.device to pause for the specified
I number of Micro-seconds.
I
\------------------------*)

PROCEDURE InitPause() BOOLEAN;

(*-------------

I
I Allocate the resources necessary to use the
I timer.device to pause a task for a specified number
I of Micro-seconds.
I
I This code must be called from within the task which
I will be calling Pause which is why it is not just
I part of the startup for this MODULE.
I
I
\-------------------------*)

PROCEDURE EndPause II ;

DJComputers.cz

(*---------------------------
I
I Free the resources allocated by Ir.itPause.
I

This code should also be called from within the task
which has been calling Pause, and cannot therefore
be set up as a TERMPROC.

---------------------------*)

END Pause.

IMPLEMENTATION MODULE Pause
IMPLEMENTATION r·:iODU:"E Pause;

FROt-! SYSTEt-!
FROM Devices
FROM IO
FRNI PorttJtils
FROM IOUtils
FROM Ports
FROM TimerDevice

WPORT
IMPORT
IMPORT
IMPORT
IMPORT
IMPORT
IMPORT

ADR, BYTE;
OpenDevice, CloseDevice;
DolO, IOStdReq, IOStdReqPtr;
CreatePort, DeletePort;
CreateExtIO, DeleteExtIOi
MsgPortPtr;
TimerName, TRAddRequest,
UnitMicroHz, TimeVal,
TimeValPtr, TimeRequest,
TimeRequestPtr:

VAR
MyTimerMsg
MyMsgPort
TimerOpen

TimeRequestPtr;
MsgPortPtr;
BOOLEAN;

(* :-=- :-=-=-=-=-=-:-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*)

PROCEDURE PauseMicros (micros: LONGCARDli

VAR
rtn : LONGINT:

BEGIN
MyTimerMsg" DO

trNode.ioCommand := 7RAddRequest:
trTime.tvSecs ;= G;
trTime.tv:·jicrc := LONGINT(micros);

rtn ;=

END PauseMicros;

(w=_:::_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_:::_=_=_=_=_=_=_=_=*)

PROCEDURE InitPause() : BOOLEAN;
BEGIN

MyMsgPort := CreatePort(NIL,O):
IF r-lyMsgPort = NIL THEN

RETURN FALSE
END:

MyTimerMsg CreateExtIO(MyMsgPort,SIZE(TimeRequest»:
IF t>1yTimerV-sg == NIL TH=:N

RETURN FALSE
END;

IF OpenDevice (ADR (Time=Name),

RETUR.."J FALSE
END;

Uni
MyTinerMsg,
LONGBITSETI)) # 0 THEN

TimerOpen := TRUE;
RETURN TRUE:

END InitPause;

(* ::=-""*)

PROCEDURE EndPause;

BEGIN
IF TimerOpen THEN

CloseDevice(MyTimerMsg);
TimerOpen := FALSE

END;

IF MyTimerMsg # NIL THEN
DeleteExtIO(MyTimerMsg,SIZE(TimeRequest});
MyTimerMsg NIL

END;

IF MyMsgPort NIL THEN
DeletePort(MyMsgPort);

:= NIL
2l\D;

END EndPause;

(*=-=*)

BEGIN

MyMsgPort
MyTimerMsg
Timer-Open

END Pause.

NIL;
NIL;
FALSE;

DEFINITION MODULE Notify
DEFINITION t-l0DULE Notify;

PROCEDURE UhOh (st,- : ARRAY OF C'lAR);

END Notify_

IMPLEMENTATION MODULE Notify
IMPLEMENTATION MODULE Notify;

FROM SYSTEM IMPORT BYTE, ADR;
FROM Intuition IMPORT IntuiText, AutoRequest, IDCMPFlagSet;
FROM Rasters IMPORT Jaml;

PROCEDURE UhOh (str : ARRAY OF CHAR);

VAR
msg,
cncl : IntuiText:

BEGIN
WITH msg DO

FrontPen BYTE(O);
DrawMode := Jaml;
LeftEdge := 16;
TopEdge := 15:
IText := ADR (sc::r);
ITextFont NIL;
Nex'CText := NIL;

END;
WITH cncl DO

FrontPen := BYTE (0);
DrawMode Jam:L;

LeftEdge := 6;
TopEdge := 3;
IText ADR("Cancel") ;
ITextFont := NIL;
NextText NIL;

END;
IF AutoRequest (NIL, ADR(msg) , NIL, ADR (cncl) I

IDCMPFlagSet { },
IDCMPFlagSet{),320,72) THEN

END UhOh;

END Notify.

END:

PREMIERE ISSUE 93

DJC
om
pu
ter
s.c
z

Collectible Disks!
The Fred Fish Colleetion

Choose from the entire Fred Fish collection and get your disks
quickly and easily by using our toll free number: 1-800-345-3360.

Our collection is updated constantly so that we may offer you the
best and most complete selection of Fred Fish disks anywhere.

Now Over 400 Disks!
Disk prices for TECH subscribers:

1 to 9 disks - $6.00 each
10 to 49 disks - $5.00 each
50 to 99 disks - $4.00 each

100 disks or more - $3.00 each

(Disks are $7.00 each for non-subscribers)

You are protected by our no-hassle,
defective disk return policy*

To get FAST SERVICE on Fred Fish disks, use your Visa or
MasterCard and

call 1-800-345-3360.
Or, just fill out the order form on page 95 .

• AC's TECH warranties all disks for 90 days. No additional charge for postage and handling on disk orders. AC's TECH issues Mr. Fred Fish a royalty on all
disk sales to encourage the leading Amiga program anthologist to continue his outstanding work.

DJComputers.cz

Name __ ___

Address __ ___
..

City __________________ State

Charge my DVisa D MC # __________________ _
ZIP ____ _

Expiration Date _____________ Signatu re ____________________________ _

Please circle to indicate this is a New Subscription or a Renewal
PROPER ADDRESS REQUIRED: In order to expedite and guarantee your order. all large Public Domain Software orders. as well as most Back
issue orders. are shipped by United Parcel Service. UPS requires that all packages be addressed to a street address for correct delivery.
PAYMENTS BY CHECK: All made check or order must be In US funds drawn on a US bank.

Save over 49% D $24.00 US
12 monthly issues of the number one resource to the Commodore Amiga, 0 $44.00 Foreign Surface
Amazing Computing at a savings of over $23.00 off the newsstand price! 0 $34.00 Canada and Mexico

Save over 46% 0 $36.00 US
12 monthly issues of Amazing Computing PLUS AC' GUIDE/AMIGA $64.00 Foreign Surface
2 Product Guides a year! A savings of $31.30 off the newsstand price! $54.00 Canada and Mexico

Save over 59%
24 monthly issues of the number one resource to the Commodore Amiga,
Amazing at a savings of over $56.80 off the newsstand price!

Save over 56%
24 monthly issues of Amazing Computing PLUS AC' GUIDE/AMIGA
4 Complete Product Guides! A savings of $75.60 off the newsstand price!

D $38.00 US
(sorry no foreign orders
available at this frequency)

D $59.00 US
(sorry no foreign orders
available at this frequency)

Please circle any additional choices below: (Domestic and Foreign air mail rates available on request)

Back Issues: $5.00 each US. $6.00 each Canada and Mexico. $7.00 each Foreign Surface.
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Subscription: $. ______ _
2.11 2.12 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 4.1 4.2 4.3 4.4 4.5
4.6 4.7 4.8 4.9 4.10 4.11 4.12 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12
Back Issue Volumes: Volume 1-$19.95* Volume 2-$29.95* Volume 3A.or 5-$29.95* each

*AII volume orders must include postage and handling charges: $4.00 each set US. $7.50 each set Canada and Mexico, Back Issues: $. ____ _
and $10.00 each set for foreign surtace orders. Airmail rates available.

Introducing: AC· TECH/AMIGA January 1991 Issue: $14.95
One-Year Subscription to AC's TECH -Four Issues!

Charter Rate: $39.95 (limited time only)! AC's TECH: $,---

Freely Distributable Software:
Subscriber Special (yes, even the new ones!)

1 to 9 disks $6.00 each
10 to 49 disks $5.00 each
50 to 99 disks $4.00 each
100 or more disks $3.00 each

$7.00 each for non subscribers (three disk minimum on all foreign orders)
Amazing on Disk: AC#, ... Source & Listings V3.S & V3.9 AC#2 ••• Source & Listings V4.3 & V4.4

AC#3 ... Source & Listings V4.5 & V4.S AC#4 ..• Source & Listings V4.7 & V4.8
AC#S ... Source & Listings V4.9 AC#S ... Source & Listings V4.' 0 & V4.1'
AC#7 ... Source & Listings V4.12 & VS.' AC#S ... Source & Listings VS.2 & S.3
AC#9 ... Source & Listings VS.4 & VS.S AC#,O .. Source & Listings VS.6 & S.7

lnNOCKulation Disk: IN#I ... Virus protection AC#" .. Source & Listings VS.8. S.9 & S.,O
AC#'2 .. Source & Listings VS.' 1. S.' 2 & 6.'

Please list your Freely Redistribuatable Software selections below:

ACDisks
(numbers 1 through 12)

________________ __
(numbers 1 through 26)

Fred Fish Disks
(numbers 1 through 410; FF395 is currently unavailable. Please remember

Fred Fish Disks 57, 80, & 87 have been removedfrom the collection)

Complete Today, or Telephone 1-800-345-3360

PDS Disks: $ ______ __

Total: $'-- ____ _
(subject to applicable sales tax)

Please complete this form and
mail with check, money order or
credit card information to:

P.i.M. Publications, Inc.
P_O. Box 869
Fall River, MA 02722·0869

Please allow 4 to 6 weeks for delivery of

subscriptions in US.

DJC
om
pu
ter
s.c
z

00000000

A switch is activated «CLICK »;
it glows a cool, steady redness.

Disk drives whirl, then programs process.

Silent
Binary
Rhapsodies

Two megabytes of free RAM wait,
slowly dwindling down to mere K's.

Lists, lines appear on CRT,
While a programmer waits to see

Labored creations execute;
while this happens, microchips mute

whip and shift data bits around,
compu-magic chants without sound ...

00000001

Silicon cities small, thriving
with millions of quick bits surging,

grouping in masses, form bytes great,
travelling at impulse's rate

-Robert Tiess

through circuits closed and open gates,
mini messengers with one fate:

serving CPU's in their state,

00000011

Running across a wooden desk
is a white mouse, doing its task

pushing, popping stacks, regulate
seas of flowing data, create

static registers, reformate
and assemble machine code mates,

to disassemble and delete.

of pointing and clicking, running
around on smooth pad fast, guiding

arrow about a screen, swinging
its tail with vital haste, tasting

options from a menu, pulling-
down, picking-up ICONS, calling

files while gadgets start prompting
press a key ... a sound chip sings

a MIDI symphony. Growing
chaos succeeds multitasking.

00000100

Hungry printers swallow paper
as important output tapers

to serial or parallel scores

00000010

Pixel by pixel a screen fills
with colorful characters' frill

upon a glossy blackbackround;
Messages appear; alarms sound;

a software insect has been found!
Programs stumble, die, crash abound.

Analysis time! Bugs confound,
compile and thwart users, astound

even clever "hackers," wrapped and wound
in jarring jargon- hunters bound

quick to quest as bug-thirsty hounds.

of bytes black on white scrolls, that pour
liquid reams blank from reservoirs.

96 AC's TECH

Tractors turn, friction-feeds firm soar
and spew pages of text, while more

ribbon fades to gray. An encore
performance commences with roars

of dot matrix spurts, and four
daisy wheels spin crisp print before

laser-wielding writers conquer.

00000101

These binary brandishing beasts
of technology have at least

afforded mankind a light year
in an inch, pinching cosmos clear

to the size of an atom mere,
magnifying microns to peer

at as if miles. Computers shear
the universe into frontiers

logical and bring the far near,
shortening distance, saving dear

time, making burdens dissappear.

DJComputers.cz

'2 tU tU Ci l:. (I) 'b 0- ::;
::J ::J iii" §. <D l:. '3 Q. Q. Q)

§ <D C/) 0 (')
:3 l:. 0 :::- ::J

S <D (') ::J C) c).

6' rii ::J tU C/) 0 tU :::: ::J (I) - 0 <: - Q'
0' S- C) 0' C/)

(")
)I;" .-

C) ",::J (')
'b C;;. s: 0- :z: <D ::xJ g. (I) (:).

""" 0- C;;. tU - ijj .-)I;" a C/)
::J

"""
.....

rii -§ '- ... -. t:
tU f: §. :3 ." ::J C/)

tU -0 6' C/) C/)
0 .- ::J .-::J ::J - C) -s- CQ ':! Ci C/) b. 0: -. tU

<D §. <D i - :3 -0 ., s- eQ' s- t: I rii .:"" <D Q) t:
C) b. Ci - (') I .-t: '6'

"""
------------------1

m () () 6: z
-< X :T III

'< '< "C III Q. 3 (!) (!) (!) §: cO (!)

cr (!) (J)

(JJ 2. 2. OJ 3
3 t: » 0 '<
0 "C Jg .-::J (!) () III D CD Ch CD :3" :;! '<
0 t: <
i3. 0- iir g:([)
!!: "

III ([)):,.

'i 1D D Crl3 III t:1ll '< (J)

3 <D
;5: 0""-1

CD Q. :r a r; (JJ ()

III 1D cO'
OJ

3 s- a c 0'0
!It 5' t:

a. m .. g
<D

:T
00' 9: III 00' t):::!:
III III 0
z (ti::J
CD o..Crl :Iii

CJ2 0"19. CJ)
c III
cr CD
III

I
-g -.([)

0- 3(.)
::J 3(;) Q t:::l Cl>;x,
III "C
::II
CD (ti:b ::J

i
·-Cil

III Crl
0
::J

c: Crl

I
0-r Crl
III

Iii>

ACs 1ECII/AM"IGA Reader Service Card

Name ____________ ____________ ________________ ________ __
Street ________ ________ ________________ ____________ ___ _
City ____ ___ _ _ __ _ State ___ ZIP
Countly ___ _ _ _ ___ _ _ _ _ ___ _ _ ____ _ _

A. please provide th6 G. Whallanguage do you most often program in?

28. o 2. Female o 4. Singlelnever married
o 5. Separatedlwidowed H. How much money are you likely to spend on all

B. What is your age? Amiga product purchases this year?
o 6. Under 18 09. 35-49 (all personal and businessJeducation lor which you
o 7. 18-24 010. 50- 64 have final decision, combined)
o 8. 25-34 011 . 65 or over 029. Less than $250 034. $2501-$5000

030 . 035. $5001-$7500
C. Which of the following do you now own? 031. 036. $7501-$10000

apply) 015 . Amiga 1000
032. $1001-$1500 037 . Over $10000
033. $1501-$2500

013 . Amiga 2500 016. Amiga 500 How did you obtain this issue of AC's TECH? 014. Amiga 2000 017. do not own an Amiga 038. Preordered this issue prior to its publication.
D. Where do you use your Amiga(s). and about how many 039. Ordered this issue alter seeing it elsewhere .

hours per week do you use an Amiga at each location? 040 . Ordered a charter subscr.,lion .
018 . At home ___ hours per week 041 . Purchased it at my Amiga dealer.

019. Home office ___ hours per week J. How many Qlb..ers. not including yourself have read!
(type of business will read this issue of AC's TECH?

020. At work ___ hours per week 042 . ___ others, in addition to myself.

(type of business K. Overall, how would you rate this issue of AC's TECH
in the areas indicated?

021 . At school ___ hours per week EgilC[ial CClllaDl: Ili.SI\;
(applications 043 . Excellent 047. Excellent

TOTAL: __ hours per week
044 . Good 048. Good
045. Fair 049. Fair

E. Please indicate the primary and secondary applications 046 . Poor 050 . Poor
for which you use your Amiga(s):

AC's TECH - Premiere Issue
Valid until 3/15/91

See page 81 for reference numbers

101 102 103 104 105 221 222 223 224 225
106 107 108 109 110 226 227 228 229 230
111 112113 114 115 231 232 233 234 235
116 117 118 119 120 236 237 238 239 240
121 122 123 124 125 241 242 243 244 245
126 127 128 129 130 246 247 248 249 250

131 132 133 134 135 251 252 253 254 255
136 137 138 139 140 256 257 258 259 260
141 142 ·143 144 145 261 262 263 264 265
146 147 148 149 150 266 267 268 269 270
151 152 153 154 155 271 272 273 274 275
156 157 158 159 160 276 277 278 279 280

161 162 163 164 165 281 282 283 284 285
166 167 168 169 170 286 287 288 289 290
171 172 173 174 175 291 292 293 294 295
176 177 178 179 180 296 297 298 299 300
181 182 183 184 165 301 302 303 304 305
186 187 188 189 190 306 307 308 309 310

191 192 193 194 195 311 312 313 314 315

22. Primary L. Do you regularly read or subscribe to Amazing Computing? 196 197 198 199 200 316 317 318 319 320

23. Secondary
051. 1 am a subscriber to AC. 201 202 203 204 205 321 322 323 324 325 052. I read, but do not subscribe to AC.

F. Please indicate the level at which you now consider 053. Do not read or subscribe to AC. 206 207 208 209 210 326 327 328 329 330
yourself to be programming the Amiga: 211 212 213 214 215 331 332 333 334 335
024. Beginner 026. Advanced M. Have you ever purchased a copy of AC's Guide?

216 217 218 219 220 336 337 338 339 340
025. Intermediate 027. Do not program 054. Yes 055. No 301

L ______________________________

ACS TECII/ AMIGA Reader Service Card
Name __________________ ______________ ______________ __
Street ___ ___ ______________ _ ____ _ _ __ _
City ____ ___ _ ____ State __ ZIP
Country ____________ ______________________ __________ __

A. please provide th6 G. What language do you most ollen program in?

on all
Amiga product purchases this year?

o 2. Female g H.
B. What is your age?

o 6. Under 18
o 7. 18-24
o 8.25-34

o 9. 35-49
010.50-64
011. 65 or over

C . Which of the following do you now own?

apply) 015. Amiga 1000
013. Amiga 2500 016. Amiga 500
014. Amiga 2000 017. do not own an Amiga

D. Where do you use your Amiga(s), and about how many
hours per week do you use an Amiga al each location?

018. At home ___ hours per week

019. Home office ___ hours per week

(type of business

020. At work ___ hours per week

(type of business

021. At school ___ hours per week

(applications

TOTAL: ___ hours per week

(all personal and business/edJcation for which you
have final decision , combined)
029. Less than $250 034. $2501-$5000
030. 035. $5001-$7500
031. $501-$1000 036 . $7501-$10000
032. 037. Over $10000
033 . $1501-$2500

How did you obtain this issue of AC's TECH?
038. Preordered this issue prior to its publication .
039 . Ordered this issue after seeing it elsewhere.
040. Ordered a charter subscription.
041. Purchased it at my Amiga dealer.

J. How many 21lJ..e.rS. not including yourself have read!
will read this issue 01 AC's TECH?
042. ___ others, in addition to myself

K. Oierall, how would you rate this issue of AC's TECH
in the areas indicated?
Edilorja! ccntelll:
043. Excellent
044 . Good
045. Fair
046. Poor

Ili.SI\;
047. Excellent
048. Good
049. Fair
050 . Poor

AC's TECH - Premiere Issue
Valid until 3/15/91

See page 81 for reference numbers

101 102 103 104 105 221 222 223 224 225
106 107 108 109 110 226 227 228 229 230
111 112 113 114 115 231 232 233 234 235
116 117 118 119 120 236 237 238 239 240
121 122 123 124 125 241 242 243 244 245
126 127 128 129 130 246 247 248 249 250

131 132 133 134 135 251 252 253 254 255
136 137 138 139 140 256 257 258 259 260
141 142 143 144 145 261 262 263 264 265
146 147 148 149 150 266 267 268 269 270
151 152 153 154 155 271 272 273 274 275
156 157 158 159 160 276 277 278 279 280

161 162 163 164 165 281 282 283 284 285
166 167 168 169 170 286 287 288 289 290
171 172 173 174 175 291 292 293 294 295
176 177 178 179 180 296 297 298 299 300
181 182 183 184 185 301 302 303 304 305
186 187 188 189 190 306 307 308 309 310

191 192 193 194 195 311 312 313 314 315 E. Please indicate the primary and secondary applications
for which you use your Amiga(s):

22. Primary
L. 00 you regularly read or subscribe to Amazing Computing?

051 . I am a subscriber to AC.
196 197 198 199 200 316 317 318 319 320

23. Sec.ondary _ ___ _____ _

F. Please indicate the level at which you now consider
yourself to be programming the Amiga:
024 . Beginner 026. Advanced
025. Intermediate 027. Do not program

052 . I read, but do not subscribe to AC.
053 . Do not read or subscribe to AC.

M. Have you ever purchased a copy of AC's Guide?
054. Yes 055. No

201 202 203 204 205 321 322 323 324 325
206 207 208 209 210 326 327 328 329 330
211 212 213 214 215 331 332 333 334 335
216 217 218 219 220 336 337 338 339 340 302 L-__________ ______________

DJComputers.cz

11111

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 36 FALL RIVER, MA

Postage Will Be Paid By Addressee:

ACs TEaI/AMIGA
P.i.M. Publications, Inc.
P.O. Box 869
Fall River, MA 02722-9969

111 ••••• 1.11 ••• 1 •• 1.1111.11.1111.1111 ••• 111'11111.11

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

I
I
I
I
I
I
I
I
I I

NO POSTAGE

NECESSARY

IF MAILED

Postage Will Be Paid By Addressee:

ACs TEaI/AMIGA
P.i.M. Publications, Inc.
P.O. Box 869
Fall River, MA 02722-9969

111 ••••• 1.11 ••• 1 •• 1.1 •• 1.11.1111.1111 ••• 11111'111.11

IN THE

UNITED STATES

,-----------------
I
I
I
I
I
I
I
I
I
I
1

Q)

. (J 0
I: I

"'
til "-

•. I: N

o 0-
I: m « :; 0 .2 m:E j3 co "'

:::J >< Gi
CD a. 0 tn .ala:
ns :E ·
CD • 0 = - 00 .- ,.,

a. 'CJ. a= a= Ii:

<J)
a.
o

c
<J)

c
ell • ...
c <J)
.- "'C E ...
... 0

... c
<J) 0
"EE
o ...
(/) 0
:C.:s:.
-0
<J) <J)
o..c
ell 0
c.. ...

:l
(I) 0
(/)>.
ell..c
(1)-a::

DJC
om
pu
ter
s.c
z

- - - - ---- - - -

EE NEW PRODUCTS FROM ICD

Flicker Free Video'"
With Flicker Free Video (FFV) and a standard VGA or multi-frequency monitor , any Amiga '" 500, 1000, or 2000
computer can produce a high quality display, free of interlace flicker and visible scan lines . Installation requires no
soldering or advanced technical knowledge and frees the video slot in Amiga 2000 computers for other uses. FFV is
compatible with all software, works in low and high resolution s interlaced or not , and has no genlock conflicts. FFV
uses a multi-layer circuit board and surface-mounted components , packing a lot of power into a very small space .
Both PAL and NTSC are automatically recognized and fully supported. Full overscan is supported , not just a
limited overscan. Three megabits of random access memory are used to ensure compatibility with overscan screens
as large as the Amiga can produce.

AdSpeed'"
ICD expands its line of innovative enhancement products for the Amiga with the introduction of
AdSpeed, a full featured 14.3 MHz 68000 accelerator for all 68000-based Amiga computers. AdSpeed
differs from other accelerators by using an intelligent 16K static RAM cache to allow zero wait state
execution of many operations at twice the regular speed. All programs will show improvement.
AdSpeed will make your Amiga run faster than any 68000 or 68020 accelerator without on-board
RAM. AdSpeed works with all 68000 based Amiga computers, including the 500, 1000, and 2000. In­
stallation is simple and requires no soldering . AdSp eed has a software selectable true 7.16 MHz 68000 mode for
100% compatibility - your computer will run as if the stock CPU was installed. 32K of high speed static RAM
is used for 16K of data/instruction cache and 16K of cache tag memory. A full read and write-through cache
provides maximum speed.

AdSCSI'" 2080
The fastest , most versatile SCSI host adapter (hard drive interface) available for
the Amiga 2000 now comes in a new configuration . AdSCSl 2080 is not DMA,
but its clean design and advanced caching driver provide greater throughput than
any available DMA interface. All the features you want are included at no
additional charge : autoboot from Fast File System partitions , Commodore '"
SCSIDirect and Rigid Disk Block conformance for no mountlist editing and
compatibility with third party SCSI devices , and the most advanced removable
media support available , including automatic DiskChange and no partitioning
restrictions. AdSCSl 2080 also includes sockets for adding two, four, six, or eight megabytes of
RAM using I megabyte SIMMs . If expansion slots are in high demand, then this card could be your
answer.

Flicker Free Video, AdSpeed, and AdSCSl 2080 join lCD's existing and growing line of power peripherals and
enhancements for Amiga computers. Our experience and expertise allow us to give you the products and support you
deserve. From beginning to end, every possible aspect of product development and production is handled in-house. We
design all the hardware, layout all the circuit boards, and write all the software. We assemble and test our products in
our own facility, providing us with an unmatched level of control over the finished product. It is never out of our hands.
These are more examples of the advantages you get from ICD. The best product. At the best price. With the best support.
No compromises.

Flicker Free Video, FFV, AdSpeedand AdscSI are trodemarks of lCD, Inc. Commodore is a registered trademork of Commodore Electronics limited. Amigo is 0 registered
trodemark of Commodore-Amigo, Inc.

Circle 123 on Reader Service card .

DJC
om
pu
ter
s.c
z

A miga L oads F aster

Shown here : ALF-RG1-RLL

All systems include :
• Framebackup which allows the boot block to be copied onto a

separate floppy disk allowing easy start up after a crash.
• AddFlp - our newest feature which installs up to 10 floppy

partitions onto the harddisk allowing diskcopy between the disk
and the floppy .

Capacity :
• 30MB up to 180MB
• up to 4 GigaBytes on special order.

For more information see your dealer or contact us.

Pre'spect Technics Inc.
PO. Box 670, Station 'H'
Montreal, Quebec H3G 2M6
Phone: (514) 954-1483
Fax: (514) 876-2869

Filerunner Card (ST506 or SCSI)
An internal Hard Disk System with a
pass-through adaptor for use with the
Amiga 2000. This system comes already
built and installed with a 3.5" hard disk
drive. Each card can accommodate a
second drive (SCSI up to seven) for
future expansion , and the power supply
is strong enough to run two drives
simultaneously . Formatted (low level!
high level) with Interleave 1: 1. Data
Transfer Rate: 420 KB/ sec. Just plug
it in and switch it on.

Filerunner Box (flat version)
An external Hard Disk System for use with
the Amiga 500 or 1000. This Hard Disk
System comes already built and installed
in a flat case which fits neatly under the
monitor . Each case can accommodate a
second drive for future expansion , and
the power supply is strong enough to run
two drives simultaneously . Just connect it
up and switch it on.

Ci rcl e 151 on Reader Ser v ice card .

Q

I

DJComputers.cz

