
Building an Audio Digitizer

A Look at
" ... Compression

-True F-BASIG
-,A Date with TrueBASIC
- A Better Way to C
-Huge Numbers Part 2
-Programming the Amiga

in Assembly Language
-AmigaDOS Shared Librari

02

o 7447078640 5

Volume 4 Number 2
US $14.95 Canada $19.95

DJComputers.cz

Introducing FreshFish™, a unique CD-ROM

series that provides the Amiga community

with hundreds of megabytes of the very latest

in freely redistributable software.

The FreshFish

CD-ROM series

is produced

directly by Fred

Fish, who has

been working to

supply Amiga

users with high­

quality, freely

redistributable

software since

the Amiga's

introduction in

1985. FreshFish

CDs, published

every 6 to 8

weeks, contain

over 100 Mb of

newly submitted material in both BBS ready

(archived) and ready-to-run (unarchived)

form. Also included are over 200 Mb of

ready-to-run GNU software (EMACS, C/C++

compiler, text processing utilities, etc.) with

full source code included, and up to 300 Mb of

other useful utilities, games, libraries, docu­

mentation and hardware/software reviews.

•
Two compilation CDs will also be available.

The FrozenFish™ series will be published

every 4 to 6 months as a compilation of the

most recent material from the FreshFish CDs.

GoldFish TM, a

two disc CD­

ROM set, will

be available in

April 1994.

This set will

contain the

entire 1,000

floppy disk

"Fred Fish"

library in both

BBS ready and

unarchived

form!

FreshFish,

FrozenFish, and

GoldFish may be

purchased by

cash, check (US dollars), Visa, or MasterCard,

from Amiga Library Services for $19.95 each

(plus $3 shipping & handling in the U.S.,

Canada or Mexico, $5 elsewhere).

Fax or mail orders and inquiries to:
Amiga Library Services
610 North Alma School Road, Suite 18
Chandler, AZ 85224-3687 USA
FAX: (602) 917-0917

DJC
om
pu
ter
s.c
z

ACs le/AMlGA
-' J"

"<,

ADMINIS'TAATION

Pubillher:
..... lstIInt Publisher:
Admlnlatratlve Aut.:
Circulation IIanager:
Aut. Circulation:

IIanIIger:
MarketIng Manager:

RObert J. Hicks
Donna Viveiros
Doris Gamble
Traci Desmarais
Robert Gamble
Emesl P. Viveiros Sr.

EDITORIAL

Menaglng Editor:
editor:
HIIntw.r. EdItor:
Video eon.unant:
"luaInIlor:

Don Hicks
Jeffrey Gamble.
Emest P.
OranSands
Brian Fox

ADVERTISING SALES .
Aclvwtlalng : Traci Desmarais

1-«10-346-3380
FAX 1-508-875«102

AC's 'TECH For The Comnodore AmIgo'" (ISSN 1053-7929) Is
published quarteIty by PIM l!ubllcatlons. Inc.. One Currant
Rood. P.O. Box 2140. FaA RIver. MA 02722-2140.

SUbscllptlons IA the U.S .• 41saue1 for 544.95: In Conoda & Mexico
mace. $5.2.95; foreign SlIface for $56.95.

AppIIcalton to mol at Second-Class postoge rates pendlnggf,
Fall RIver. MA 02722. ';

POSTMASTER: Send address changes to PlM .•
P.O. Box 2140. Fall RIvef. MA 02722-2140. In ttleU,S,A.
CoPvrIghtO by PlM PublIcations. Inc. All rights

FIr$t Closs or AIr Mall rates O\Ia1oble request, PlM 'Publica­
tIons. lnc, maintains the right to refuse any odvertIsIng.

I9JI Publcottons Inc, Is not obligated to retum unsolicited mate ­
I1oIs. All requested returrys must be received wtth 0 Self, Ad­
dresed Stomped Moler .

Send ortIcJe submissions In both manuscript and disk torinot with

each to the EcIIor. Requests for be
ctrected to the address listed above.' "

, ,

AMIGAN Is a reglstf;lf8d
Commodore-Amigo. Inc"

Volume 4 Number 2

3

9

14

22

26

True F-BASIC
by Roy M. Nuzzo

A Look at Compression
by Dan Weiss

A Date with TrueBASIC
by T. Darrel Westbrook

Building an Audio Digitizer
by John Iovine

A Better Way to C
by Paul Gittings

42 Huge Numbers Part 2
by Michael Greibling

54

68

Programming the Amigo in
Assembly Language:
Using the Math Co-processor
by William P. Nee

AmigaDOS Shared Libraries
by Daniel Stenberg

Departments

2
40
41

Editorial
List of Advertisers
Source and Executables ON DISK!

VOLUME 4, NUMBER 2

DJComputers.cz

Startup Sequence
Hug A Beginner

AC's TECH is devoted to the Amiga user who
wants to go deeper into the Amiga. Through
hardware projects like Building an Audio Digi­
tizer (on page 22 of this issue), AC's TECH
readers have been able to understand more
about the hardware capabilities of the Amiga
and how the Amiga relates to other peripheral
hardware. In addition, software has also been a
major part of AC' s TECH as we continue to offer
programs in True BASIC, C, Assembly Lan­
guage, and more. These articles and programs
are a catalyst to users who have an understand­
ing of the Amiga, but want examples to help
them create their own works.

Teaching To Learn
A very important facet of teaching any­

thing is that once we focus on how to explain
something to another person, we create a clearer
picture of our subject for ourselves. We begin
examining the project or subject from a variety
of different views to be able to explain the
subject in various ways so it is more readily
understood by the student. This examination
often opens barriers to our own understanding.

If we have become complacent with an
idea or a concept, we begin to view the idea
from a static angle. However, if we are chal­
lenged to look beyond (and around) mental

Each of us can point to at least
one person who helped us in the
past become what we are today.

None of the products and articles dis­
cussed in AC's TECH should be taken at face
value. Each article is a means to an end. The
staff at AC remain dedicated to creating more
informed Amiga users. Amazing Computing For
The Commodore Amiga consistently offers prod­
uct reviews, new product announcements, bug
fixes, hints and tips, and more. AC's Guide To
The Commodore Amiga maintains a database of
software and hardware tools available to the
Amiga market.

The aim of AC's TECH is not to make
everyone a hardware hacker or software guru­
although we would be very excited if it did.
The purpose behind AC's TECH is to make
users more comfortable with the thought of
creating a software program or combining hard­
ware peripherals on the Amiga. If the ideas and
projects presented here help to create superior
hardware developers or software designers,
then we are more than pleased.

This means that while the projects and
articles presented in AC's TECH require tech­
nical knowledge and should not be attempted
unless the Amiga user is aware of the possible
consequences, beginners should not be dis­
suaded from getting a more experienced user
to help them. This "buddy system" will not
only create more competent users for the Amiga,
but it will also challenge the more experienced
user.

2 AC'sTECH

blocks, we begin to see the concept anew. It is as
if we have found a door in our house that leads
to a completely new living area.

In the movie "Dead Poets Society" Robin
Williams plays a teacher in an all male school. At
one point, he challenges his students to stand on
his desk and look at the classroom from a differ­
entperspective. What the students discover, is a
view of their world that they never knew ex­
isted. What they take with them is the ability to
challenge the normal and consider different
concepts.

Teaching informs the teacher. By becom­
ing secure in the details and concepts, the teacher
becomes more confident in the subject. This
makes better teachers (as long as they remain
open to different views) and it makes better
hardware enthusiasts.

We All Started Empty
Fortunately none of us started life know­

ing everything. We have all needed to learn
things through time. Each of us can point to at
least one person who helped us in the past
become what we are today. The fortunate of us
can pointto a number of people who have made
a difference when they took the time to help us
understand what they already knew.

There are also those individuals who can
point with pride to an accomplishment of some­
one they have helped and know that it was their

effort that prepared the individual for the
achievement. This is not egotistical or
ungenerous. These people are genuinely proud
of what their friend or student has been able to
do. Their pride in being part of that is very
human.

Asking More
I have often asked our readers to be more

involved in the Amiga market. I have asked
them to talk with their dealers and with devel­
opers to offer positive suggestions on how prod­
ucts or services may be improved. I feel that
anyone who has an investment in the Amiga,
either financially or mentally, owe it to them­
selves to do what they can to create an Amiga
marketplace that services them. What we can­
not forget is that new users need our input even
more.

When a newly purchased Amiga (new or
used) is sitting in front of its new owner, imme­
diately there are a thousand questions to be
answered. While it is important that users
should learn as much as they can by them­
selves, it is also important that they have a
source for experienced help.

A strong argument could be made that
this is what the dealer is paid to do. However,
a dealer cannot be available whenever the new
user stumbles over another new concept. While
most dealers strongly support their customers,
none of them are available as often as a new
"unsolvable" crisis may appear.

Many new users are buying used ma­
chines from Amiga users who are trading up to
more powerful Amigas such as the Amiga 4000
or 1200. These "new" machines require as much
support as Amigas delivered from a show­
room. While most users want to support some­
one who has purchased their old Amiga, there
is always the call of the new Amiga to pull them
away. Sometimes it is difficult to patiently ex­
plain a kicks tart incompatibility when all you
really want to do is fire up the latest and great­
est graphics package on your fully expanded
Amiga.

However, the student can surpass the
teacher. The person who is just starting today
could easily become your best resource in the
future. Doesn't it make a lot of sense to help
them now? You could need them.

Don Hicks
Managing Editor

•

..

DJC
om
pu
ter
s.c
z

TnIC F-BASI
by Roy M. Nuzzo

Do you like weird? This is weird. However, it is good weird. I will show you how
to write, debug, and run F-BASIC from True BASIC.

What?
No. Really. There is method in this madness. First the reasons why. True BASIC

is very intuitive and easy to dream in. It is a super fast idea testing environment. The
reasons are several. The language is very coherent and unfettered. The language
editor is just simply the best thing out there for any file editing purpose. The editor
takes macros to an unprecidented level. It can even nibble and edit its own structure.
That is what this article will show you. True BASIC has some flaws. Overscan and the
new AGA modes are not supported. There is no stand alone linker for the 32 bit
machines.

F-BASIC has a single author feel, lots of idiosyncracies, very arcane command syntax
structures, and mixel-moxel borrowing from many languages (I feel at home with the throw back
to Fortran66-like string handling. I grew up on that.). However, what F-BASIC does, it does very
very well. It does overscan and AGA graphics . It does many neat things directly that other
languages require you to do with nasty add on support. It also drives you crazy with the most
annoying text editor on Earth.

Solution. Take the True BASIC editor and tum it into an F-BASIC editor that writes,
compiles, runs, and debugs F-BASIC.

The 'TBE' (we'll call theTrue BASIC editor 'TBE') has a 'Do' feature. You write what is
essentially a program except that it is placed at the top of an external library as a first subroutine
in that library. This library is simply a sequence of subroutines saved as a separate file (compiled
or uncompiled). By issuing a command to 'Do filename', the first sub in that file is activated as
if it were a stand alone program and executes as would a program.

However, it operates in the editor's background. While it is running, you are looking at the
text in the editor . The 'Do Program' does not replace or cover the current file that you are looking
at. This 'Do routine' may be passed a string argument. If you omit the string argument, it supplies
its own as a null. That string might be a complex string of a zillion arguments but we do not need
that here.

The 'Do program' automatically has access to the code (text) currently residing in the editor,
and can read it and modify it right as you are looking atit. It can also do anything that any program
can do such as send out system shell commands, organize and read files, whatever .

The TBE can also load binary files and edit directly by typing from the keyboard or by way
of clever 'Do' programs. It can load a copy of itself and edit its own code and resave the modified
editor in working tip top shape.

VOLUME 4, NUMBER 2 3

DJComputers.cz

True F-BASIC

When the TBE is first started up, it reads a startup file called

'TBStartup' residing in the drawer called 'TBDo' located in the main

True BASIC directory (which I have assigned as TB:). This TBStartup file

lists' ALIAS' names for paths to various user libraries so that applica­

tions on different machines (even MAC or IBM) can use the same

program path references. An alias {TBLibraryl may actually be

'Work:Lang/TB/TBLibrary' on your machine. It can also preload any

resources (libraries) and key files as you wish. Any sub in a preloaded

library is immediately available to typed commands in the command

window.

You can also edit the help files which pop up at your desire. J never

really needed them with True BASIC, but they sure are handy for the

oddball commands of F-BASrc.

Also in the TB: drawer is a subdirectory called 'TBLibrary' contain­

ing various support libraries including the one we will use named

'AmigaLib*'. This compiled library contains the subroutine named

'CLIO' which allows user programs to issue any shell cqmmand at

runtime.

Example: Call CU("copy RAM:#? to dfO: ALL") .

Following is a library containing only a 'Do Program'. You see it as

a subroutine sitting at the top of the file. The 'EXTERNAL' statement

merely tells the compiler to compile this file without looking for a main

program (that makes this a library).

If you compile and then save the compiled library file as 'Foo*' , the

command to activate the first sub as a 'Do Program' would merely be

'do foo'. The sub name is not used. This allows any library to have a

housekeeping sub at the top to be activated without remembering that

subs individual name.

I have the working drawer for F-BASrC assigned as FB: on my

computer. Also note that the code ' .. .' for line continuation in this listing

is not real, but there simply to allow magazine 60 column reading of the

longer single line.

F-BASIC Compile & Run
by Roy M. Nuzzo

! Compile and save as I FR I in the 'TBDo' drawer.
This is a 'Do program' activated from within the
True BASIC editor. Editor started from the 'F8:' path.
Save the program text file in the 'FB:' directory.
At the command window type "do FR. filename"

<no quotes> then enter.
F-BASIC is case sensitive so use correct case.
The True BASIC editor will launch FB:FB with the

! debugger option.

! If the file has an error, the debug option leaves a text
file read by this 'Do' routine. The 'Do routine' returns
to the editor with the file line number that failed.

At the editor command window type "to <linenumber>"
and you are placed on the offending line.

EXTERNAL
sub FBasicCompile (line$ (), FileName$)

-$(), --$
all ' Do' subs have these two arguments.
The array is passed by the editor, itself.
This array is the code actually residing
in the editor.

LIBRARY "{TBLibrary}AmigaLib*"
this lib has the CLI () sub in it.

let FileName$ = Trim$ (FileName$)
the argument in the 'do dofile, arg'.
User might add spaces as here.

4 AC's TECH

IF FileName$ "" THEN

No file name was supplied with do command,
TRY THE FILE NAME CURRENTLY IN THE EDITOR

ask name FileName$
WHEN ERROR IN

! see if it is out there
open #100: name "FB:" & FileName$, organization ...

.. . TEXT, CREATE OLD
close #100

USE

I If here, then even the current file name was not
found. Report error back to editor & return
control to editor. User needa to save file
to FB:, then compile it.

close #100

cause error 1, "Use: Do FB, filename"
The above words will appear

! in the editor message bar.

END WHEN

END IF

there,

WHEN ERROR IN

Remove old 'name. EXT' file, if

but don't croak if not.

when error in
call CLI ("Delete FB:" & FileName$ & ". EXT")

end when

! NOW LAUNCH THE F-BASIC COMPILER (called 'FB')
! Tell it to leave a debug trail (opt-d),
! toot for fun.

call CLI ("FB " & FileName$ & II opt-d")

sound 1000,.01
! Initialize errflag and text line counter

let ErrNum$ = II No Err."
let count = 0

WHEN ERROR IN

Examine the resultant' .EXT' file.
It exists if the compile fails. The
Number of lines in that file = the line
at which compile croaked.
Count the lines.

open #100: name "FB:" & FileName$ & ". EXT" I •••

. .. organization TEXT, CREATE OLD
set #100: POINTER BEGIN

DO while more #100
line input #100: s$
let count = count + 1

LOOP

let ErrNum$ = " Err at " & STR$(count) & •••

... ". Resave after correcting."

The above text will appear in the
editor message bar.

sound 3000,.01
USE

END WHEN

close #100

! Now run the successfully compiled file.

call eLI ("FB:" & FileName$ & ".bin")

DJC
om
pu
ter
s.c
z

True F-BASIC

USE

cause error 1. Bxtext$ &: ErrNum.$

exit sub

END WHBN

cause error 1. "Done . " &: BrrNum$

END SUB

What does this do? The editor launches the 'do' routine which
evokes the F-BASIC compiler (called 'FB') with the option to leave
debug files as well. The absence of an" .EXT" file means that it compiled
properly. The 'do' routine then issues the shell command to run the
compiled version of the program (name ends in ' .bin').

When the running of the compiled program is completed , the True
BASIC editor takes over again . The message bar in the editor echoes any
messages passed to it by way of the 'cause error' commands.

By compiling this library and naming it 'FR' and saving it to the
TB:TBDo drawer, you can compile and run an F-BASIC program by

typing the following in the command window of the editor:

do fr, filename

That's it. But that's not enough. We want weird and we shall have it!
Clear the True BASIC editor. Load a new file. That file is the editor

itself. Go ahead. It will load just fine.
Use the 'Find' function to find the string of characters "FORMAT"

burried in the sea of binary characters. You will find "FORMAT" twice.
Each time it is part of a text sequence "Do FORMAT" surrounded by

gibberish. Keeping the same number of characters (6), delete "FOR­
MAT" and type "FBASIC". Again this is required twice. The first
occurance was the text seen in the editor pull down menu . The second

time is the text actually issued to the outer Amiga shell by the editor
when the corresponding menu item is selected.

Do NOT save this file as "True BASIC"! That's risky.
Save this altered binary file as "True BASICf" and keep it in the same
drawer as the regular True BASIC. This avoids the need to duplicate the
startup files etc., and bails you out if you messed up.

From a shell,

> copy "TB:True BASIC. info" ram:

> rename "ram:True BASIC.info" as "ram:True BASlef . info"

> copy "ram:True BASlef.inio" to TB:

Now go into the TB:TBDo drawer and make a copy of the FR file,
renaming it as FBASIC (the 6 letter name we used in the TBE menu).

We are all set. Double click on the new program called "True
BASICf". A new True BASIC editor activates. Look at the pull down
menus. In the 'Do' program menu is one called "Do FBASIC". It also has
an indicated hot key 'right-Amiga-D'.

Now load or type and edit an F-BASIC program within this fast,
easy, and powerful editor. Use right-Amiga-S to save the text file before
compiling, and right-Amiga-D to compile and run your F-BASIC pro-

grams. If they croak, you get told the place where . Just type "to
linenumber" (to 322, whatever) to go to the bad line. The SDBG needed
files are there and can also be used from within the editor with similar
strategy.

Load your s:Shell-Startup file and add this line :

alias TBF "TB:True BASlct"

When you open a shell and type FB: you are in the F-BASIC drawer
if FB: was assigned to your F-BASIC directory. Type TBF and you open
your new editor in the FB: path as this editor defaults to the path that
beckoned it.

The True BASIC editor allows macros to be assigned to keys and
saved as key files. 'Do' routines can read and modify your files or search
for common errors or replace tokens for expanded commands in exact
form etc.

The very low cost of True BASIC makes this all rather practical.
Less than the cost of phone support.

VOLUME 4, NUMBER 2 5

DJComputers.cz

True F-BASIC

! 'FC_Do'

M. Nuzzo

F-BASIC Compile Only Written by Roy

! Compile and save as 'FC' in the 'TBDo' drawer.

! This is a 'Do' program called from within the True

BASIC editor.

! Save the file to the 'FB:' directory.

! At the command window type "do FC, filename" <no

quotes> then enter.

! F-BASIC is case sensitive so use correct case.

! The True BASIC editor will launch FB:FB with the

debugger option.

! If the file screws up, the debugger leaves a text file

read by

! this Do program.

! The Do program returns to the editor with the line

number that failed.

! At t he command window type "to <linenumber>"

EXTERNAL

sub FBasicCompile (line$ () ,FileName$)

LIBRARY" {TBLibrary} ArnigaLib*"

let FileName$ = Trim$(FileName$)

if FileName$ = "" then

! TRY NAME OF CURRENTLY LOADED FILE

ask name FileName$

when error in

open #100: name "FB:" & FileName$, organization

TEXT, CREATE OLD

close #100

use

close #100

cause error 1, "Use: Do FB, filename"

end when

end if

when error in

when error in

call CLI ("Delete FB:" & FileName$ & ". EXT")

use

end when

call CLI ("FB " & FileName$ & " opt-d")

sound 1000, .01

let ErrNum$

let count = 0

6 AC's TECH

" No Err."

WHEN ERROR IN

open #100: name "FB : " & Fi1eName$ & ". EXT" ,

organization TEXT, CREATE OLD

set #100: POINTER BEGIN

do while more #100

Line input #100: s$

let count = count +1

loop

let ErrNum$ " Err a t " & STR$(count) & "
Resave after correcting. "

sound 3000, .01

USE

END WHEN

close #100

omit running part

call CLI ("FB:" & FileName$ & ". bin")

use

cause error 1, Extext$ & Er r Num$

exit sub

end when

cause error 1, "Done." & ErrNum$

end sub

! 'FR_Do'

M. Nuzzo

F-BASIC Compile & Run Writt en by Roy

! Compile and save as 'FR' in the 'TBDo' drawer.

! This is a 'Do' program cal led from within the True

BASIC editor.

! Save the file to the 'FB:' directory.

! At the command window type "do FR, file name" <no

quotes> then enter.

! F-BASIC is case sens i ti ve so use correct case.

! The True BASIC editor will launch FB:FB with the

debugger option.

! If the file screws up, the debugger leaves a text f i le

read by

! this Do program.

! The Do program returns to the edit or with the line

number that failed.

! At the command window type "to <l inen umber >"

DJC
om
pu
ter
s.c
z

Three ways
to make your life easier:

Amazing Computing For The Commodore Amigo is dedicated to Amigo
users who want to do more with their Amigas. From Amigo beginners to
advanced Amigo hardware hackers, AC consistently offers articles,
reviews, hints, and insights into the expanding capabilities of the Amigo.
Amazing Computing is always in touch with the latest new products and
new achievements for the Commodore Amigo. Whether it is an interest
in Video production, programming, business, productivity, or just great
games, AC presents the finest the Amigo has to offer. For exciting Amigo
information in a clear and informative style, there is no better value than
Amazing Computing.

AC's TECH For The Commodore Amigo is the first disk-based technical
magazine for the Amigo, and it remains the best. Each issue explores the
Amigo in an in-depth manner unavailable anywhere else. From hard­
ware articles to programming techniques, AC's TECH is a fundamental
resource for every Amigo user who wants to understand the Amigo and
improve its performance. AC's TECH offers its readers an expanding
reference of Amigo technical knowledge. If you are constantly chal­
lenged by the possibilities of the world's most adaptable computer, read
the publication that delivers the best in technical insight, AC's TECH For
The Commodore Amigo.

AC's GUIDE is a complete collection of products and services available
for your Amigo. No Amigo owner should be without AC's GUIDE. More
valuable than the telephone book, AC's GUIDE has complete listings of
products, services, vendor information, user's groups and public domain
programs. Don't go another day without AC's GUIDE!

Live better with Amazing Computing

1-800-345-3360

DJComputers.cz

True F-BASIC

As told by AC Tech #3.4 and Amiga World Aug. '93 ...

The LANGUAGE For The Amiga!
One Amiga language has stood the test of time.

This new package represents the fourth major upgraded release
of F-Basic since 1988. Packed with new features,
5.0 is the fastest and fullest yet. The power of C with the
friendliness of BASIC. Compatibility with all Amiga
platforms through the 4000 ... compiled assembly
object code with incredible execution times ...
features from all modern languages, an
AREXX port, PAL and ECS/AGA chip
set support ... Free technical support ...

This is the FAST
read so much

Support. DOS
1.3,2.0,2.1 and3.0

F·BASIC S.OTMSystem $99.95
Includes Compiler, Linker, Integrated
Editor Environment, User's Manual, & Sample
Programs Disk.

F·BASIC S.OTM+ SLDB System
As above with Complete Source Level DeBugger.

$159.95

Available From: DELPHI NOETIC SYSTEMS, INC. (605) 348-0791
P.O. Box 7722 Rapid City, SD 57709·7722

Send Check or Money Order or Write For Info. Call With Credit Card or C.O.D.

Fax (605) 343-4728 Overseas Distributor Inquiries Welcome

EXTERNAL

sub FBas icCompile (line$ () , FileName$)

LIBRARY" {TBLibrary}AmigaLib*"

let F ileName$ = Tr im$ (F ileName$)

if Fi leName$ = "" then

! TRY NAME OF CURRENTLY LOADED FILE

ask name FileName$

when error in

open #100: n ame " FB :" & FileName$, org aniza ti on

TEXT, CREATE OLD

cl o se #1 00

use

cl os e #100

c a use error 1, "Us e : Do FE, fi lename "

en d when

end if

when error in

8 AC's TECH

when er ro r in

call CLI ("Delete FE:" & Fi leName $ & ". EXT")

use

e nd when

call CLI (" FB " & Fi leName$ & " opt-d")

sound 1000, .01

let ErrNu m$ = " No Err."

l et count = 0

WHEN ERROR IN

open #100: name "FB:" & Fi leName$ & ". EXT",

organization TEXT, CREATE OLD

set #100: POINTER BEGIN

do wh i le more #10 0

Li ne i nput #100: s$

let count = count +1
loo p

le t Er rNum$ Err at " & STR$(count) & "
Resave a ft er correcti ng. "

sound 3000 , .01

us e

USE

END WHEN

close #100

call CLI(" FE :" & FileName$ & "_bin")

cause er ro r 1, Extext$ & ErrNum$

exit sub

end when

c a use error 1 , "Don e ." & ErrNum$

end sub DJC
om
pu
ter
s.c
z

,
om reSSlon

Compression is a hot topic everywhere today. Computer users
want to compress the files on their hard drives to save space. Cable
companies want to compress their signals so that they can send 500
channels over the cable they are currently sending 50 channels.
Graphic programs have new and even more powerful tools of com­
pression with the JPEG and MPEG standards. Soon, they tell us, we
will be able to fit 72 minutes of full motion video and sound on a CD
where today we can only fit 72 minutes of sound. Everywhere you
look compression is in use. But what is it and how does it work?
Lets take a look at compression, by looking at two popular methods
used.

Put the squeeze on

BY
DAN WEISS

Compression in the computer sense is taking a file and from it
creating a smaller second file that can be used to recreate the first file.
There are many ways to do this. All methods come down to one
simple idea: replace a large amount of information with a small
amount of information by finding things that are common in the
data. As an example the file consisting of

IIAAAAAAABBAAAAAACCBABABBBBBBBBBBBBBBABABBBAAAAABBABBAAAA"

could be compressed as :

7A2B7A2CIBIAIBIA14B1A1B1A3B5A2BIA2B4A

Where the number preceding the letter tells how many times that
letter should be repeated.As you can see this works out pretty good,

VOLUME 4, NUMBER 2 9

DJComputers.cz

Compression

except when there is a single letter, then the code takes up more
space than the original letter. In fact if you had a block of text that
very few letters were next to a similar letter (like this article) then the
"compressed" file would be much bigger than the original. In
compression "lingo" this is know as the degenerate case, and most
algorithms have some similar worse case situation. In this algorithm
we "let the air out" of the file by counting runs of information that
are the same.

Counting the runs of information is known as "Run Length
Encoding" or RLE for short. RLE is used in the IFF lLBM standard
and is very good where there are long runs of the same value. For
this reason a two color picture (black and white for instance)
compresses very well where a 24 bit picture (approximately 16.8
million colors) does not. Of course if the whole 24 bit image was on a
particular color then it would compress very well, but usually they
are not.

Another advantage of RLE is that it executes quickly and is easy
to implement. The following is a block of pseudo code that imple­
ments an RLE compressor:

/* File compressor '* /
curRun • NOLL;
curRunCount = 0;
while (not end-ot-tnfile)
{

curChar = fscanf (infile, "%c");
if (curChar ! = curRun)
{

else

if (curRunCount != 0)

fprintf (outfile, H%c%c" ,curRunCount, curRun);

curRunCount = 1 i
curRun = curchar;

curRunCount ++;

The only problem with this code is that it assumes that the program
that decompresses the file can tell a number from a piece of data. In
the previous example let's replace the letter' A' with 1, 'B' with 2 and
'C' with 3. The data then becomes:

"111111122111111133212122222222222222121222111112212 21111"

and the compressed version becomes:

7122712312111211142111211325122112241

This is clearly a problem since you can't tell the numbers from the
data. We can get around this with the following convention. The first
byte of the file will always be a count byte. The second byte will
always be a data byte. This means that we can only do runs of at
most 255 characters before we must define a second run of the same
character. This way, the odd bytes in the file are count bytes and the
even are data bytes.

10 AC's TECH

Modifying the above code we get:

/ .. File compressor" /
curRun = NULL;

curRunCount = 0;
while (not end-of-infile)
{

curchar = fscanf (infile, "%c");
if (curChar ! = curRun)

else

if (curRunCount != 0)
{

fprintf (outfile, "%c9-'oC" , curRunCount,curRun) ;

curRunCaunt = 1;

curRun = curChar;

curRunCount ++ i

if (curRunCount > 255)
{

fprintf (outfile, "%c%c", curRunCount, curRun);
curRunCount = 1;

Now we can write the decompressor. The pseudo code would be:

/* File de-compressor * /
while (not end-of-infile)
(

iseanf (infile, "%c, %e", runCount, runChar) ;
for (i = 0; i < runCounti i++)

fprintf (outfile, "%e", runChar);

As you can see the decompressor is trivial, which is a desirable
attribute. In most cases it is more important to be able to decompress
quickly than to be able to compress quickly. In the case of high speed
animation (30 frames per second) compression is used as a way to get
the image in from the hard drove (or CD-ROM) quickly (by having
less data to load). Once the data is loaded it must be expanded
quickly. This algorithm does that.

But it needs a better ability to handle data that is nearly random.
As mentioned in the beginning the case of every character being
different than the last one would result in a doubling of the file. What
we need is a way to block out these runs of randomness. Taking a
page from the IFF ILBM implementation of RLE we will do the
following:

If the high bit is set in a count byte then clear the bit and copy the
number of bytes indicated directly from the file.

If the high bit is not set on a count byte then copy the next byte the
number of times indicated.

This reduces the maximum run to 127 but handles random cases
much better. The modified compressor pseudo code looks like this:

/* File compressor with random support */
curRun = NULL;

curRunCount = 0 i
randomString = NULL;

randomCount = 0;
while (not end-of-infile)
(

curChar = fscanf(infile,"%c")j
if (curChar != curRun)
{

if (eurRunCount != 0) /* ending a run */

DJC
om
pu
ter
s.c
z

Compression

curchar)

*j

fprintf (outfile, "%c%o", curRunCount, curRun);
curRunCount = 1;
curRun = curChar;

else j* just beginning or in a random block */
{

if (randomCount ! = 0)
{

if (randomString [randomCount] ==

/ * second char in run

curRunCount = 2;
curRun = curChar;

randomString[randomCount-l] = 0;

'* set high bit * I

£printf (outfile, "%c%s", randomCount, randomString);

no random data now *'
else

random character '* I

127)

randomString{randomCount+l] = 0;

randomCount += 128; 1* set high bit */

fprintf (outfile. "%c%s", randomCount. randomString) ;

randomCount = 0;

randomString [randomCount] = curChar i

randomcount += 128; /

randomCount = 0; / '*

1* just another

if (randomCount ==

randomCount ++;

curRun = curChar;

else /* just starting out, treat as random
*j

curChar;

else

curRunCount ++;
if (curRunCount > 127)
{

randomString [randomCount] =

randomCount ++;
curRun = curChar;

fprintf (outfile, "%c%c" ,curRunCount. curRun);
curRunCount = 1;
curRun = curChar;

The code has gown a bit, but we now handle random runs of up
to 127 characters at a time. In the example string this change the

string from:

7A2B7A2C1BlA1BlA14BlA1B1A3B5A2B1A2BU

to:

7A2B7A2C13lBABA14B13lABA3B5A2B129A2BU

Which doesn't look smaller because we are writing out the

numbers, but actually uses 5 bytes less. If the data were more random
the savings would be greater. Looking at the degenerate case of total

randomness we only add one byte for every 127 characters. If the file

has only one run of four characters out of every 127 then we end up

with no net enlargement. Any more or larger runs result in some
compression. The best case is when each run is 127 characters long

resulting in a 63.5 to 1 compression ratio! This of course does not
happen in the real world, but is fun to think about.

The de-compressor does not get much more complicated with

the new rules. The pseudo code becomes:

/* File de-compressor with random support */
while (not end-of-infile)
{

fscanf (infile. "%c". runCount);
if (runCount > 128) /* random */

runCount -= 128; /* clear the top bit */
fread(randomString, runCount, 1, infile);
randomString [runCount+l] = 0;
fprintf (outfile, "%8", randomString);

else /* a run */

fscanf (infile, "%c", runChar);
for (i = 0; i < runCount; i++)

fprintf (outfile, "%c", runChar);

Look it up in a dictionary
One of the advantages of RJ .E is that it can adapt to any data.

This is because it is only worried about the data one byte at a time.

This is also a disadvantage when the data tends to repeat itself over a

range of more than one byte. For instance the string:

INOUTOUTINININOUTOUTOUTINOUTININOUTOUTOUTININOUT

would not compress at all under the RLE algorithm because every
character is surrounded by different characters. On the other hand

you can see that the string is simply the words "IN" and "OUT"

repeated over and over. What would be great is if we could create a
special compression scheme where "IN" was replaced with 1 and

"OUT" with 2. Then the string would be :

1221112221211222112

A savings of 19 vs 48, better than 2.5 to 1 compression. If the string

were longer, then the savings would be bigger. We could also apply
the RLE algorithm to the compressed file and gain a little more.

The approach of using short codes to replace chunks of the file is

known as dictionary based compression (from the fact that the codes

are looked up). Dictionary based compression can be very powerful

since it can look at larger parts of the file. The problems with this

method are two fold. First you must send a copy of the dictionary
with the file which increases the size of the file losing some of the

benefit of the compression, and secondly choosing and building a

dictionary is not trivial and takes time.

The first problem can be alleviated if you come up with a static

dictionary that can be used for many files. When using a static

VOLUME 4, NUMBER 2 11

DJComputers.cz

Compression

dictionary it only needs to be built into the compressor and
decompressor, not sent. This is the idea used by fax machines. When
defining the Group 3 fax standard thousands of faxes were analyzed
to find typical runs of white and black dots. When they were
finished, a static dictionary was released, and built into every Group
3 fax machine. Because there is a very high chance that noise on the
phone line could scramble the data, each line of the fax is treated as a
separate "file". In a perfect world the whole fax would be one stream
of data, but if a code gets changed then count bytes could be read as
data and vice versa resulting in chaos. Treating each line separately
limits the damage to a single line.

It would seem that every fax is very different and that a simple
RLE algorithm would be better but the dictionary based compression
works very well, but only for faxes. If you try to apply the fax
dictionary to regular data, the results are not as good. As you would
expect this is typical of all dictionary based compression methods.
An optimal dictionary for one file is not optimal for another.

How then do you build an optimal dictionary? In the case where
there is a logical unit of information, like words in a sentence, a
dictionary can be built from these units, much like in the "IN lOUT"
example. In situations where the data appears random what you
choose for the entries in the dictionary don't matter. Don't matter?
you say. No, it doesn't really matter. Pioneering work by Abraham

matched. Clear the buffer down to the last character read and start
again.

What this does is continue to build longer and longer codes
based on what has come before. This is prefect for picking up runs of
characters that repeat, like words. It may seem very inefficient to add
a new code into the dictionary for every character or group of
characters encoded but it has two advantages. The first is that you
never know when a sequence of data will reoccur. By building a large
table you stand a very good chance of catching the same sequence
again. Using this method you can even catch longer sequences like
repetitive phrases (such as "I have a dream" from Martin Luther
King Jr.'s famous speech). It also is very good at encoding long runs
of the same data. The repeating string of XO (as in
XOXOXOXOXOXOXO) would not be compressed by RLE encoding.
But the LZW version would first save the X then the 0 then the codes
for XO, XOX, OX, OXO and finally XO. All together the data would
be reduced to seven codes, a significant savings.

The second reason to encode all of the combinations is so that
you do not have to send the dictionary along. Remember one of the
disadvantages of dictionary based compression is having to send the
dictionary. By using the a well defined method for creating the
dictionary from the data you can create the dictionary from the
compressed data and codes as well. Let's look at how.

they tell we will be able to fit 72 lllinutes of

full lllotion video and sound on a CD

where today we only fit 72 lllinutes of sound.

Lempel and Jacob Ziv (the Land Z of LZW compression) showed in
the late seventies that you can create a useful dictionary on the fly by
looking at the file.

Lempel, Ziv and Welch
LZW (Lempel- Ziv - Welch) compression is the backbone of

much of the general purpose file compression today. The modem
V42.bis compression method is based on LZW and the GIF and TIFF
graphic formats use it as well. The idea is deceptively simple yet
represents a major breakthrough. The basic algorithm works as
follows:

Create a dictionary array with some number of entries (2K to 4K
entries is typical). Assume that the table starts with entry 256 because
entries 0 to 255 are assumed to contain themselves (ie. entry 230
contains 230). Read the first two bytes in the file. Place the combina­
tion of the two bytes into the dictionary as the first entry. Since there
was not a match for the pair in the dictionary originally, output the
first byte and shift the second one down. Read the next byte. Does the
buffer now hold a combination that is in the dictionary. If not, do as
the first time. If it does match a combination in the dictionary, then
keep reading data until you can no longer make a match. Then make
a new code out of all the data and output the last code that was

12 AC's TECH

How's it done?
Going back to our first example we start with:

" AAAAAAABBAAAAAAACCBABABBBBBBBBBBBBBBABABBBAAAAABBABBAAAA"

The first two characters are read in. Since no codes exist yet, the
first' A' is output and the combination' AA' is made entry number
256. Now the third' A' is read in. Combined with the second' A' it
makes' AA' which is code 256, so we read in another byte hoping to
find an even longer match. We don't so we output the code 256 in
place of' AA', take the current buffer of 'AAA' and make it code 257.
Then we remove the first two' A"s since they have been output and
read in the next character. Reading in the fifth character we get' AA'
in the buffer. Since we have a match for 'AA' we read the next
character hoping for a longer match. The sixth character is an 'A' so
the buffer is now 'AAA'. This matches code 257 so we add another
character. The seventh character is also an 'A'. There is no code for
'AAAA' so we output 257, create code 258 and remove the code
'AAA' from the buffer leaving' A'. The next piece of data is 'B'.
Combined with the' A' we get' AB'. There is no code for this so we
have to output the' A' by itself and create code 259. 'The next 'B'
combines to make 'BB' there is no code for this either so the first 'B' is
output and 'BB' becomes code 260. Next is an 'A' the 'B' in the buffer

,

DJC
om
pu
ter
s.c
z

Compression

and the' A' make 'BA' which has no code. Code 261 is created and
the 'B' is output. Next is an 'A'. 'AN is a code we know so we try for
more. 'AAA' is known as well so we continue. 'AAAA' is also know
so we try for five' AUs. We don't have a code for five' AUs so we out
put code 258 and create code 262 with first' A's.
Let's stop here a minute and make a table of what we have done.

Input Output Code Table
'AA' 'A' 256= 'AA'
'AA' 256 257= 'AAA'
'AAA' 257 258= 'AAAA'
'B' 'A' 259 = 'AS'
'8' 'B' 260 = 'BB'
'A' 'B' 261 = 'BA'
'AAAA' 258 262 = 'AAAAA'

As you can see it paid off latter for creating the code 258 earlier. At
this point any run of' A"s from two to five characters can be encoded
by a single code.

But how does it look from the other end? How does the
decompressor recreate the file? Working only from the data in the file
we will recreate the dictionary and the file. The compressed file is :

"A{256) (257)ABB{258)"

The decompressor starts with an empty dictionary. Reading the first
'A' the decompressor places it in an empty buffer. The next code is
{2561. This means that the compression program found a match on
the second character. Since the first character is an 'A' and the second
and third characters were the same as the first and second, the first
two characters must be the same. The decompressor adds a second
'A' to the buffer and creates code 256, which it then outputs and
leaves' AA' in the buffer. The next piece of data is a code as well so
again the new character must be an 'A'. Code 257 is created and
output. The next piece of data is an 'A'. Since this is not a code, then
we know we need to flush the buffer. The code 258 is created and the
buffer is flushed except for the' A' just read in. Finally the' A' is
output. The next character is a '8'. Again since this is a character
code, the code 259 is created and the buffer is flushed except for the
'B', which is output. The next '8' repeats the process. The code 258
causes the buffer to be loaded with the first character from the code.
Code 261 is created from the 'B' and the first 'A' in code 258. Now the
entire entry for code 258 is loaded and output.

As you can see, the dictionary is recreated on the fly from the
order of the data and the rules used to create it. While the explana­
tions can get a bit lengthy it actually works out to be a straight
forward algorithm. It is very good at compressing files that have
repetitive data in them. Text files are loaded with repetitive data as
are many graphics files. For example, a black and white file that has a
gray pattern (every other bit is black) does not compress using an
RLE algorithm. But as shown by the "XOXOXO" example earlier,
LZW will get better and better at compressing the file until it can take
very large chunks at a time. This ability to adapt to the data is what
makes it so powerful.

What's the difference
When we first looked at dictionary compression we noted that

the best results come when you understand the data you are
compressing. LZW does well even when it knows nothing about the
data. But if we look at the data, very often we can "help" the LZW
algorithm. The best case of this is called horizontal differencing. If
you look at 24 bit pictures, they tend to feature gentle transitions
from one color to another unlike Deluxe Paint pictures which offer
sharp contrasts. If you think about it the transition from light to dark
red is the same as from light to dark blue except for the color. To take
advantage of this, we take the data and preprocess it.
Take the value of the first pixel and subtract it from the second pixel.
store the original first pixel and the difference between the first and
second as the second pixel. Compute the third pixel by subtracting
the original second pixel from the third pixel. Continuing through
out the file you will notice some things. In places where there is a
gentle even change, you will end up with long strings of the same
value, which compress very well. Gradations of all colors now look
the same (and compress with the same codes) because the change
data instead of the color data is being recorded. In the case where the
colors are random, then the data is random either way. In effect this
becomes a win/win situation for very little effort. The file is easy to
reconstitute after it has been uncompressed. Simply take the first
pixel and add it to the second. Add the second to third and so on.

More later
Well that concludes an overview of two of the more popular

methods of data compression. There are many others, and there is
even more to LZW than what we covered. In another issue of ACs
Tech we will look at implementing these and other compression
algorithms on 'C. Until then, keep in touch through this magazine or
via internet at danw@slpc.com.

Complett' SOlll'(,t' (,0.1 .. and
('Rn))(' fOllnd on tilt'

AC's TECII disk.

l'lease UTile 10:

Dall

c/o AC's TECII
P.O. Box 2110

Fall Rit'er. MA 02722

VOLUME 4, NUMBER 2 13

DJComputers.cz

ADate
with T rueBASIC by T. Darrel Westbrook

14 AC's TECH

We use calendar dates in many applications. Working with dates requires
planning regarding their use internally in the program and how we display or use
them in a program. We must check dates entered by application users for accuracy.
The checking process must make allowances for the day of the month, whether it's a
leap year, and how you would like to display the date. Personally, I dislike cryptic
date displays that are difficult to read at a glance. Consider 01-07-93. Is it 7 January
1993 or 1 July 1993? A disp la yed date (on screen or printed) should be easily read, like
1 Jul93, and the format should be user selectable. With the ability to determine the
day of the week, you can write applications that build calendars, display full date
information, preform scheduling functions, etc. This article explains a True BASIC
module that supplies these attributes for your programming use.

I designed the True BASIC Date Module, outlined in this article, for maximum flexibility.
It returns suitable date information to the calling program for use on screen or on a printed
medium. The date information is also usable for sort keys. Additionally, this article highlights
a work around for a bug in the Amiga True BASIC language date functions, which is present
in both version 1.0 and 2.0 of the language. Finally, I'll discuss error routines and how you can
cheaply, code wise, trap a lot of general input errors.

You can use Listing 1 to test the Date Mod­
ulecapabilities. The Global Module subrou­
tines, 'error_reset' and 'make_error', are nec­
essary for the Date Module to function prop­
erly and must be including in your pro­
grams. Reference lines 93 through 114 for
these two subroutines. The Date Module is
Listing 2. Line numbers are for reference
only.
Throughout this article I will reference a

'date template'. The date template is any
combination of day, month, and year ex­
pressed as D or DD for day, MM or MMM or
MMMM for month, and YY or YYYY for

DJC
om
pu
ter
s.c
z

A Date with TrueBASIC
year. The date module converts any case combination of the date
template into upper case. Later, I'll discuss what each part of the date
template represents. But first, calendar background will provide his­
torical insight behind the structure of the Date Module.

A calendar, according to the Encyclopedia Britannica, u •• is a means
of grouping days in ways convenient for regulating civil life and
religious observances and for historical and scientific purposes." An
ideal calendar would be tied to the movement of the moon phases,
seasonal events, and religious holidays. Astrological events, which
happen every year but are slightly different each year, are the basis for
most religious holidays. For example, the vernal equinox is the basis of
the Christian Easter holiday . The vernal equinox occurs when the sun
passes northward over the equator. It marks the first day of spring and
is generally around 21 March. The exact occurance of the many
Christian holidays use the Easter holiday as a baseline. It is easy to
understand why this was importantto religious leaders. Other religious
holidays, like the Jewish Passover, are determined by their relationship
with specific astrological events, like the vernal equinox.

In February 1582, Pope Gregory XIII, issued a proclamation that
brought the vernal equinox back to 21 March. The proclamation
abolished ten days that had accumulated over the past centuries. The
Pope added the ten days to 6 October to make it 15 October after the Feast
of St. Francis, which occurred on 5 October. The 365.2422 days per year
became the new year length. The year length of 365.2422 days per year
replaced the old Julian calendar year length of 365.25 days per year (the
correct value is 365.24199). This was a difference of 0.0078 days from the
old Julian calendar (used since 45 B.c.) and resulted in 3.12 day error for
every 400 years. This correction eliminated three out of every four
centennial leap year in the Julian calendar. This change is why every
centennial year that is evenly divisible by 400 is a leap year. Forexample,
the year 2000 is a leap year, but the centennial year 1900 is not.

Leap years happen every four year (years that are evenly divided
by four) besides the centennial leap years . The year 1996 and 1896 are
both leap years. If you calculate dates before 15 October 1581, you
would need to allow for the changes made by Pope Gregory XIII's
proclamation. It could get quite involved. The Date Module uses 1
January 1700 as the cutoff to simplify the program. I didn't have any
need for dates before 1900, but I didn't want
to build to much limitation into the module.
The module determines if a year is a leap
year in the subroutine (see lines 592 to 611)
and sets the leap_flag variable to either one
(leap year) or zero (non leap year).

You can use the Date Module to estab­
lish a specific date template for use within
your programs. You can allow the user to
change the date template by using the
Change_Date_Format subroutine. For a
given date, the module subroutines return
the day of the week (Sunday through Satur­
day) and a day of the week number (1
through 7). The day of the week number is

Above" the eH overlay.

suitable for determining weekdays for scheduling programs, calendar
generating programs, etc.

The Date Module returns similar information for the month (i.e.,
numbers 1 through 12 and corresponding names of January through
December). Month abbreviations (i.e., Jan, Feb, etc.) are also available
for your programming use. The subroutine provides two sortable dates
for internal program use. They are the string form of and
YYYYDDD .(The date template is the format used by parse_date to
arrange the order of day, month, and year in rtn_date. The number of
the individual items in the date template is as important as the location
of the Ds, Ms, and Ys. The module will accept single or multiple Ds for
the day. The subroutine pads a single digit day with a leading blank for
a single D character in the date template. For multiple Ds it pads the
single digit day with a leading zero. The month format is similar to the
day determination.

The date template determines the returned month format and
where the parse routine searches the input string for the month. If the
template has one or two Ms, it will return the date as a two digit numeric
month. If your date template has three Ms, the date returned will have
a three character month (like Jun). When the Ms in the template number
four or more, then you get the full spelling of the month. A similar
operation occurs with the year, but it will only accept two and four digit

VOLUME 4, NUMBER 2 15

DJComputers.cz

A Date with T rueBASIC
years. Therefore, the only valid year input is YY and YYYY template .
The rtn_date variable is the returned variable in the date template
format. If there are other combinations or formats of date s you would
like returned to your calling programs, it is easy to modify the Date
Module to get exactly what you want. Since the date templ ate deter ­
mines the contents of rtn_date, you probably shouldn't change it. You
can change any of the other returned variables without affecting the
Date Module performance or you, could add another variable to the
argument list of the parse_date subroutine.

The parse_date subroutine (lines 334 through 510) will recognize
program inputs that contain date template delimiters. A date delimiter
is a printable character that separates the day, month, and year. The
module uses the delimiter to format the returned date values (Le.,
rtn_date E). The most common delimiter is the dash (-) or minus sign
between the day, month, and year. For example; the program code
converts 1 Jul 93 to 01-07-93 for a date template ofDD-MM- YY. The Date
Module will recognize any printable character except an alphabet letter
or a number as a date template delimiter. If you have several delimiters
in a given template, the program will recognize them all, but will use
only the last one in the template string as the delimiter for the module .
When you use the Date Module in a True BASIC program, lines 202
through 226 initialize the module. The SHAREd variables (lines 202
through 215) are self-explanatory. The Max_Day subroutine and the
date function are PRIVATE to the module (lines 216 and 217). These two
are not callable outside the Date Module. I did this to prevent changing
the year, max_day, m_factor ,and leap_flag outside of module control.
If you want to address these procedures outside the limits of the module,
remove the PRIVATE statements.

Lines 218 through 225 initialize Date Module variables. The
Change_Date_Format? subroutine (line 284) initializes the date tem­
plate variables length , lengthm ,lengthy ,delimiter, user_date_format,
and order_date_string. I used these variables throughout the module as
module specific global variables. It cuts down a lot of code overhead
when you SHARE variables within a module. I have included a small

16 AC's TECH

subroutine, Get_Date_Format, to return the current template to the
calling program.

If you want to initialize your Date Module with a different tem­
plate, change line 224 to the template you want to use . You must also
change the order_date_string variable, line 225. I used the
order_date_string variable to resolve conflicts that occur from user
input. It is a four character string, with a blank for the first character. The
following three characters must be one each of 0, M, and Y. The DMY
characters help module subroutines make decisions regarding user
input when it doesn't exactly match the date template or other input
parameters. The parse_date subroutine , line 334 , uses the
order_date_string to resolve a user input date to the date template. This
subroutine parses any date input (like user input) that does not originate
from the computer system. The date module gets the computer system
date from the System_Date subroutine . You must be cautious when you
use the Amiga True BASIC date functions. These date functions have a
software bug that can make your system date seem inaccurate.

True BASIC has two built-in date functions . They are and date .
The date function returns the current machine date in the form of
YYDDD, which is a Julian date format, and date uses the YYYYMMDD
format. The Amiga True BASIC version does not recognize leap years.

It manages dates well until 29 Feb of a leap year. On that day the
language will return 1 Mar of the leap year. From then on the date
returned by True BASIC is one day off throughout the remainder of the
leap year. Both functions (date and dateS) are off by one day.

On 31 Dec of the leap year, True BASIC gets confused and finally
realizes that something is wrong. It returns the date YYYYOI00 for the
dateS function and YYOOO for date functions . This is the only instance
when True BASIC returns a zero for the day . When the user enters a non
leap year date or the system date does not reflect a leap year, the
language will return valid dates. The code from the dateS function
(lines 238 to 283) in Listing 2 corrects this True BASIC software bug . The
bug is not present in the IBM version of the language. Delete lines 245
to 274, if you use this code for the IBM machines. Although the IBM True
BASIC version does not need this code, the code will function as

outlined in this article in an IBM
compatable machine.

You can test this software bug
by using a utility that allows you
to change the Amiga system date
like TimeSet 2.0, by David Holt. If
you don't have one of these Public
Domain date / time setting pro­
grams, then use the CLI program,
date. From a CLI, type:

date 29-feb-92

which is a leap year. Just to see
if the system accepted the date,
type in date, which should display
Saturday 29-Feb-92 plus the cur-

DJC
om
pu
ter
s.c
z

A Date with T rueBASIC
rent time . Use the Amiga's multi-tasking capabilities and have True
BASIC up and running. From True BASIC command input screen (press
F2 while in the True BASIC editor), type;

make_error, you can cause an error of your choosing, then check the
EXLINE$, EXTYPE$, and EXTYPE variables in your calling program. If
EXTYPE is anything but zero, an error of some type has occurred. Using
these global variables releases you from passing error messages back
and forth from calling routines to the module and back again.

print date$
which will print out 19920301, which translates to 1 Mar 92. You

can check the YYYY0100 True BASIC output by setting the system date
to 31-Dec-92. Be aware that the AmigaDOS date program will not accept
dates before 1 Jan 78. This is the date the software recognizes as the base
line of its existence. The Date Module does

Line 241 is an example of how this module handles error manage­
ment. If the value of the system date is zero, then the system date is not

.:;;;.

not share this limitation. It will accept
dates between 1 January 1700 t031 Decem-
ber 2199.

The Date Module Date_Data subrou­
tine returns the following information to
the calling program.

year, the numeric year in YYYY for­
mat month, the numeric month (i.e., 1
through 12), day, numeric day of the month,
julian, Julian date in the YYYYDDD
format,month$, full alphanumeric month
name, like June, m_abrev$, abbreviation
for the month, like Jun, dow_factor, nu­
meric day, 1 to 7 (Sunday to Saturday),
dow _name$, alphanumeriC day of the week,
like Sunday, rtn_date$, date based on the
module date template, sort_date$,
YYYYMMDD format

As you can see, any program which
uses dates can use the Date Module. The
program also uses a novel means to pass
error information back to the calling pro­
gram without creating a runtime error .

True BASIC has three global variables
that it uses for error reporting . They are
EXLINE$, EXTYPE$, and EXTYPE. These
are normally null and zero, but when an
error occurs they are set to the line number,
the type of error and the error number.
Appendix C of the True BASIC Reference
Manual lists all the language built-in error
information. Since the language is expand­
able, there are commands that allow you,
the programmer, to create your own error
traps and handlers.

To create your own error traps you
use the WHEN ERROR IN ... USE ... END
WHEN structure. If you cause an error, by
using the CAUSE ERROR or CAUSE EX­
CEPTION commands within this structure
the program will not experience a fatal
runtime error and stop the program. By
using the subroutines error_reset and

Selected as the best professional productivity
software at the last two North American
Amiga Developers' Conferences, the SAS/C
Development System now includes C++.

If you are currently using another
commercial C compiler, call now for details
on our special trade-in offer!

For more information and to order, call
SAS Institute at 919-677-8000, ext. 7001.
SAS and SAS/C are registered trademarks or trademarks of SAS Institute Inc.
in the USA and other countries. ® indicates USA registration. Other brand
and produ ct names are registered trademarks or trademarks of their
resp ective holders.

ff1/
SAS Institute Inc.
SAS Campus Drive
Cary. NC 27513

VOLUME 4, NUMBER 2 17

DJComputers.cz

A Date with TrueBASIC
set. There is no error built into the language that reports that the system
date is not set. Line 241 creates an error by passing an error number and
an error message to the make_error subroutine. This subroutine sets
EXTYPE to 123 and the EXTYPE$ to "Computer system date is not set."
The EXLINE$ variable is set to either line 104 or line 109, depending on
the msg$ variable. Program flow then returns to the calling routine
which only needs to check the EXTYPE to determine if the system date
is set. Line 325 and lines 506 to 509 are other examples of using this
technique to handle errors in your program.

The True BASIC Date Module in this article should be a valuable
addition to your programming library. The Date Module will decrease
your programming time and provide flexibility in handling date vari­
ables. It and the error routines are valuable tools to add to your True
BASIC library.

Listing One

') ! Demonstration program for Date

Copyrighted by T. Darrel Westbrook, 1993

4 Released to the Public Domain for non-profit,

5 non-commercial use

6

7 !

DO

CLEAR

10 CAL,T, Center (Jll:..nrcr Comr:1and like;",4,j)

11 CALL Center("Change Template, See Template, System Date,

or Date" ,6,2)

12 CALL Keylnput(10,c$)

13 IF len(c$) c 0 then EXTT DO

14 SELECT CASE UeaseS; (e$)

15

10

18

19

20

21

23

24

)5

26

27

28

29

30

31

32

33

34

35

16

"CHANGE 'rRMPL.;Tf"

DO

CLEAR

CALL Center ("Enter new date template.",4,3)

CALL KeyInput(8,c$)

IF len(c$) = a then EXIT DO

C.I',LL Change_Date_Format(c$)

IF ex+-:ypc :- 0 then EXIT DO else CLEAR

CALL CenLel-("Error with ddLe template!",6,2)

CALL Ccnter(Rxtext$,8,3)

PAUSE 4

LOOP

CLEAR

IF len(c$) <> 0 then

CALL Get_Date_Format (strinqS;)

CALL Center("Date template changed to",4,2)

CALL Center(c$,6,3)

CALL Center ("Press any key to cont inue" , 8,1)

CALL buffer

GET KEY d

CLEAf!

END IF

18 AC's TECH

37 CASE "SEE TEMPLATE"

38 CLEAR

39 C1'.LL Get_Date_Format (string$)

40 ChLL Center ("Current date format is 'Ii &

'" . " ,4,3)

41 CALL Center("Press any key to continue",6,1)

42 CALL buffer

43 GET KEY a

44 CLEAR

45

46

CASE "SYSTEM DATE"

CLEAR

47 CALL System_Date(rL:l_date$,dow_name$, julian$)

48 CALL Get_Date_Format (string$)

49 CLEAR

ng$ &

50 CALL Center (" '" & rtn_date$ & '" is the system

date, which is a IIJ & dow_name$ & H • • ",6,2)

51 CALL Center ("I used a date format of " & stringS &

".",8,2)

52 C.;LL Center ("The julian date is " & lulian$ &

".",10,3)

53 CALL Ccnter("Press any key to continue", -=-2,1)

54

55

56

CALL buffer

GET KEY a

CLEAR

57 CASE "DATE"

58 CALL Get_Date_Format (st 1'i ng$)

59

60

61

DO

CTE,;R

C.?\LL Center ("Enter date using the date template

of" & string$,4,3)

62 CALL Key Input (8,e$)

63

64

65

66

67

IF len(trirn$(c$)) = 0 then EXIT DO

CALL parse_date (c$,year,month,day)

CLEAR

IF extype = 0 then

CALL

J2i::e_lBta(ye3r,rrrrth,clv, li,1",J,llt'£$, mrU:EtE$)

68 CALL Center ("You entered a date of " & c$ &

1/, which is converted to", 2, 1)

69 CAI,L Center (rtn_date$ & " by the module using

the template'" & stringS & "'.",4,1)

70 CALL Center ("t:ne cat;]. returned the module

for your use is;",6,2)

71

str$ (year)

" . " ,8,3)

('l\.LL Center ("Ycc.H, month, and day are" &

", " & str$ (month) & ", and" & str$ (clay) &.

72 CALL Center("A julian day (format YYYYDDD) of

'" & j ul ian$ & '''.'', 1 0 , 3)

73 CALL Center ("Month data of ," & monthS &

and '" & m_abrevS & '" . " , 12 , 'j)

74 C.;LL Center ("Day of the week data 1 to 7

represent ing Sunday to Sat urday, anci" , 14 I 3)

75 C."LL Center ("the day of the week. In this

case they are'" & strS (dow_factor) & ", and'" & dow_nameS &

'''.'' ,16,3)

76 CALL CenLer("A string date suitablG

sorting is available. It is '" F, 'cort_date$ & "'.",18,3)

77 ELSE

78

79

80

81

82

83

CALL Center(HAn error has occurred",4,3)

CALL Center("It is -> " & exlext$,6,2)

END IF

Center ("Pre::.;s

CALL buffer

G:':c:' KEY a

key for another", ,1)

DJC
om
pu
ter
s.c
z

A Date with TrueBASIC
84 CLEAR

85 LOOP

86 CASE else

87 CLEAR

88 EXIT DO

89 END SELECT

90 LOOP

91 END

92 EXTERNAL

93 MODULE Global

94 OPTION BASE 1

95 SUB error_reset

96 WHEN error in

97

98

99

CAUSE EXCEPTION 0

USE

END WHEN

reset EXTYPE error flag

100 END SUB ! end of 'error_reset'

101 SUB make_error (n,msg$)

102 IF len (msg$) = 0 then

103 WHEN error in

104 CAUSE ERROR n

105 USE

106 END WHEN

107 ELSE

108 WHEN error in

109 CAUSE ERROR n,msg$

110 USE

111 END WHEN

112 END IF

113 END SUB

114 END MODULE

end of 'make_error'
end of 'Global'

115

116 support subroutines

117

118 SUB KeyInput (row,c$)

119 SET CURSOR 'OFF"

120 CALL buffer

121

122

123

124

125

126

127

128

129
130

131

132

133

134

135

136

137

138

139

140

141

LET col = 40 ! start at the center of the screen

SET CURSOR row,34

PRINT repeatS (" ",32) ! clear the input box

LET c$ initialize return string
DO ! forever loop

SET COLOR ! set cursor color
SET CURSOR row,int((80-1en(c$»/2) + lenle$)

PRINT "I"

DO

GET KEY keycode

SELECT CASE keycode

CASE 8,13,32 to 127

IF keycode >= 32 and keycode =< 126 then

LET t$ = ehr$(keycode)! printable char

ELSE

LET t$ null character

END IF

EXIT DO

CASE else

! try again

END SELECT

142 LOOP

SELECT CASE keycode 143

144

145

146

147

148

149

CASE 8, 127 BS and DEL keyeode

IF col = 40 then

SOUND 150, .15

! sound bell if backspace too far

ELSE

LET c$ = c$[l:lenle$)-l] ! take ?ff last

input to string

150

151

SET COLOR 1 ! change color, text input

SET CURSOR row,col

152 PRINT repeat$I" ",len(c$) + 1)

153 SET CURSOR row,intl (80-1en(trim$(c$) »)/2)

! center the current string

PRINT c$ & " 154

155

156

157

158

159

e$ =

LET col ::: col + 1 ! increment column

160

161

CASE

END IF

13

WHEN error in

IF ord(t$)

USE

! doni t exit
162 END WHEN

! CR

-1 and len (e$)

163 EXIT DO Exit if character is CR

0 then LET

164 CASE 32 to 126 printable characters

165

166

167

168

169

170

SET COLOR

SET CURSOR row,col - 1

LET c$ = c$ & t$! add to string

SET CURSOR row,int((80-1en(trim$(e$»)/2)

PRINT c$

IF len(c$) = 30 then EXIT DO ! c$ is equal to

max string length

171 LET col = col - ! increment col counter

CASE else 172

173 item selected which is not allowed by

program

174 END SELECT

175

176

LOOP ! End of forever loop

SET COLOR Pen_Color

177

178

SET CURSOR row,int((80-len(c$))/2

PRINT c$ & •

179 LET c$ = trimS (c$)

180 END SUB! end of 'KeyInput'

181

182 SUB Center (txt$, row, Pen_Color)

183 SET COLOR Pen_Color ! change text color

184 SET CURSOR row, int i (80 -len (trim$ (txt$))) (2)

185 PRINT txt$

186 END SUB

187 SUB Buffer

188 DO

IF key input then

GET KEY b

GET MOUSE j,k,l

ELSE

GET MOUSE j,k,l

END IF

! end of 'Center'

clear keyboard buffer

get any keyboard input

get mouse input too

get mouse input too

189

190

191

192
193

194

195

196

IF 1 <> 3 and NOT key input then EXIT SUB

LOOP

197 END SUB end of 'Buffer'

VOLUME 4, NUMBER 2 19

DJComputers.cz

A Date with TrueBASIC

Listing Two

198 MODULE Date

199 Date Module for True BASIC, Amiga Version 2.0

200 Copyrighted by T. Darrel Westbrook, 1993

201

202 SHARE month1$

203 SHARE dow$

like January, February, etc.

day of the week

204 SHARE max_dayS variable

205 SHARE max_day1$! non leap year max days in a month

206 SHARE max_day2$! leap year max days in a month

207 SHARE m factorS ! month factor used in calculation of the

day of the week

208 SHARE leap_flag! when to 1, leap year, -1 for nonleap

year

209 SHARE lengthy number of Y's in the user_date_format$

210 SHARE lengthm

211 SHARE lengthd

number of M's in the user_datE_formatS

number of D's in the user_date_format$

212 SHARE user_date_format$! date format, DDMMYY, DDMMMYYY,

MMMMDDYYYY, etc.

213 SHARE order_date_string$! sets the order of D MY, for

the returned date

214 SHARE delimit_flag'! 1 if delimiters is used in a date

215 SHARE delimiterS ! single character to separate date items

216 PRIVATE MaX_Day

217 PRIVATE cdate$

218 ! initialize variables

219

220 LET max_day 1 $ = "312931303130313130313031"

221 LET max_day2$ = "312831303130313130313031"

222 LET month1$ =" January February March April

May June July AugustSeptember October November

December"
223 LET dow$ Sunday Monday TuesdayWednesday

Thursday Friday Saturday"

224 LET user_date_format$ = "DDMMMYY"

225 LET order_date_string$ = " DMY"

226 CALL Change_Date_Format (user_date_format$)

variables

227 ! module subroutines and functions

228 SUB Get_Date_Format (string$)

229 LET stringS = user_date_format$

230 END SUB

231 SUB System_Date (rtn_date$, dow_name $, julian$)

232 LET x$ = cdate$

233 LET year val(x$[1:4))

234 LET month

235 LET day

236 CALL

val (x$ [5: 6])

val(x$[7:8])

initialize

Ilt:ELIl£a(yEr,nrri:h,dl{,jul.iir$,lllI1:t$,m_iheJ$,d:wja:J:cr,<hLrHtE$,rtrLC1'tE$,s:rt_d'iE$)

237 END SUB

238 DEF cdate$

239 EXCEPTIONS: 123, Computer system date is not set.

240 IF val (date$) = 0 then

241 CALL make_error(123, "Computer system date is not

20 AC's TECH

set. ")

242

243

EXIT DEF

END IF

244 CALL error reset ! reset TB global error number

245

246 ! error trap for True BASIC dateS function bug

247

248 IF date$[5:8]="0100" then! during leap year, TB dateS

function
249

YYYY0100

LET day 31 31 Dec of leap year is returned as

250 LET month= 12 ! with YYYY being the entry year + 1

251 LET year = val(date$[1:4])-1

252 CALL Max_Day(year)

253 ELSE! date is not 31 Dec of a leap year

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

LET day val(date$[7:8])

LET month = val(date$[5:6])

LET year = val(date$[1:4])

CALL Max_Day (year)

IF leap_flag = 1 then ! this is a leap year

SELECT CASE month

CASE 1

CASE 2

error does not occur until 29 Feb YY,

True BASIC believes that 29 Feb of a

leap year is 1 Mar of that year.

IF day> 28 then CALL move_dates

CASE 3 to 12

CALL move_dates

END SELECT

END IF

END IF

! end of CASE month

end of 'IF leap_flag = 1

end of 'IF date$[5:8]="0100"

end of Amiga True BASIC Version 2.0

error trap for known dateS function bug.

275 LET cdate$ = using$("%%%%",year) & using$("%%",month)

& using$ ("%%", day)

276 SUB move_dates

LET day = day - 1

IF day = 0 then

277

278

279 LET month = month - 1 ! change month first, so

the day will be correct

280 LET day val(max_day$[month*2-1:month*2J)

281

282

END IF

END SUB

283 END DEF ! end definition 'cdate$'

284 SUB Change_Date_Format (string$)

285 EXCEPTIONS: 124, "Date format string (" & stringS

& ") is unacceptable. "

286 LET stringS, t$ trim$(ucase$(string$))

287 IF len(string$) = 0 then CAUSE EXCEPTION 124, "Date

format string (" & stringS & ") is unacceptable. "

288 LET d$ = "" initialize string with leading blank

289

290

291

292

293

294

295

LET delimiterS

LET n 1

! initialize delimiter holder

FOR i=2 to 4

SELECT CASE t$[n:n] get character of string

CASE NY·

LET a$ = NY·

CALL Find_Position

296 LET d$ = d$ & ·Y·

297 LET lengthy = counter determine type of

year to return

298 CASE "M II

DJC
om
pu
ter
s.c
z

A Date with TrueBASIC
LET a$ = "M" 299

300

301

302

CALL Find_Position

LET d$ = d$ & "M"

LET lengthm = counter determine type of

year to return

303

304

305

306

CASE "D"

LET a$ = "D"

CALL Find_Position

LET d$ = d$ & "D"

307 LET lengthd = counter ! determine type of

year to return
308 CASE else ! assume its a delimited character

309 LET delimiterS = t$[n:n] ! use only the last

delimiter found

310 LET i = i-I

order_date_string$character

311 LET n = n + 1

delimiter

END SELECT

NEXT i

back up one

character to allow for

312

313

314 IF len(delimiter$) = 0 then LET delimit_flag = 0 else

LET delimit_flag = 1

315 IF lengthy = 2 or lengthy = 4 then! length year OK

316 IF lengthm >= 2 then ! length month OK

317 IF lengthd >= 1 and lengthd =< 2 then

318

319

320

321

322

323

324

! length day OK

LET user_date_format$ = stringS

LET order_date_string$ = d$

EXIT SUB

END IF

END IF

END IF

325 CAUSE EXCEPTION 124, "Date format string (" & stringS

& ") is unacceptable. "

SUB Find_Position 326

327 LET counter = 1 ! count number of times Y, M, or D
occurs

FOR k=n+l to len(t$) ! find a$ in t$ 328

329 IF t$[k:k] = a$ then LET counter = counter + 1

ELSE EXIT FOR

330 NEXT k

331

string

LET n k reset n within the user_date_format$

332 END SUB

333 END SUB

end of 'Find_Position'

of 'Change_Date_Format'

334 SUB parse_date Idat$,year ,month,day)

335 ! EXCEPTIONS: 125, "Date delimiter should be " &

delimiterS & "."

336 126, "Improper date string."

337 LET year, month, day = 0

338 LET d$ = trimS (dat$)

339 SELECT CASE delimit_flag

340 CASE 0 ! no template delimiters used

341 WHEN error in

342 IF val I trimS (d$)) <> 0 then LET flag

! month is numeric
USE

-1

343

344

345

346

347

348

LET flag = 1

CALL error_reset

END WHEN

! reset error number

the template

349

350

IF flag = -1 then

FOR t = 2 to 4

month is numeric, we think

step through the order of

SELECT CASE order_date_string$[t:t]

CASE "Y"

351 WHEN error in

352 IF t <> 4 then LET year =

val I trimS Id$ [1: lengthy])) else LET year = val I trimS (d$))

353 USE

354

355

356

357

! trim off year

358

359

CALL parse_date_error

EXIT SUB

END WHEN

LET d$ = trim$(d$[lengthy+1:len(d$)])

CASE "M"

WHEN error in

360 IF t <> 4 then LET month =

val (trim$ (d$ [1: lengthm])) else LET month = val (trim$ (d$))

361 USE

362

363

364

365

CALL parse_date_error

EXIT SUB

END WHEN

LET d$ = trim$(d$[lengthm+1:len(d$)])

! trim off month

366 CASE "D"

367 WHEN error in

368 IF t <> 4 then LET day =

val (trim$ (d$ [1 : lengthd])) else LET day = val (trim$ I d$))

369 USE

370

371

372

373

CALL parse_date_error

EXIT SUB

END WHEN

LET d$ = trim$(d$[lengthd+1:len(d$)])

! trim off day

374 END SELECT ! of CASE

order_date_string$[t:tJ

375 NEXT t

376

377

the template

ELSE ! alphanumerics used for the month

FOR t = 2 to 4 ! step through the order of

THIS IS NOT A COMPlETE USTING

Complete source code and listings can
be found on the

AC's TECH disk.

Please write to:
T. Darrel Westbrook

c;!oAC's TECH
P.O. Box 2140

Fall River, MA 02722

VOLUME 4, NUMBER 2 21

DJComputers.cz

Build Your Own

by John Iovine

MOST OF US HAVE HEARD THE AMAZING sound
capabilities of the Amiga computer. The ability to play digitized
sound is one of the favorite features of the computer. To record
your own sound you need an audio digitizer. The sound digi­
tizer project described in this article allows the computer to
sample sound. The sound sampler is compatible with most
commercial software packages (QuaserSound, Audiomaster &
others) as well as some PD software available on Fish disks (i.e.
PerfectSound on Fred Fish #50).

The advantage of this project is that the electronics and
components are kept to a bare bones minimum . This simplifies
construction, lowers cost and improves the likelihood that you
will actually build the project and that it will work successfully.

The heart of every digitizer is the ADC (Analog to Digital
Converter) chip. This chip is responsible for reading an analog
signal and outputting a binary number equivalent. In this case

22 AC's TECH

UND

the analog signal to be sampled (digitized) is the audio input
from a standard microphone. The binary number outputted by
the ADC chip is read by the Amiga computer via its parallel port
and stored in memory.

The ADC chip in this project is capable of digitizing 50,000
samples per second with an 8 bit (0-255) resolution.

Sound Sampling
When recording, the ADC chip reads the voltage of the

waveform at that particular instant and presents the binary
number to the Amiga. The Amiga reads the number, stores it in
memory, and signals the chip for the next sample. This contin­
ues for as long as sound is being recorded. The ADC chip follows
and the computer records the basic shape of the original wave­
form .

During playback, the computer reads the binary numbers
in sequence and outputs a proportional voltage via a sound
channel. The output voltage varies in synchronization to the
recorded signal, thereby playing back the digitized sound.

Cycle Time
Sampling speed of the digitizer is important. It determines

the fidelity and maximum frequency of the analog signal that
the computer can record. Fortunately for us this has all been
worked out long ago, its call the Nyquist criterion. It simply
states that to digitally record an analog signal accurately you
must sample at twice the maximum frequency of the analog
signal. If you fail to meet this criterion you can not be sure of the
accuracy (fidelity) of the digitized sound.

Our ADC chip can sample at 50,000 samples per second
which exceeds the sampling speed of the sound software to
date.

DJC
om
pu
ter
s.c
z

ITIZER
If you have not tried digitized sound on the Amiga,

use this hardware project to make your Amiga \\listen up."

Typically to record voice or simple sounds (i.e. bang, bell or
tone) slow digitizing speed may be employed. More complex
sounds like music and higher fidelity require faster sound
digitizing. Sampling speed is determined by the software.

Circuit Description
Look at the schematic illustrated in figure 2. The circuit is

easy to understand. The microphone input is fed into an 8-pin
audio amplifier chip (LM386). The output from the audio ampli­
fier IC is fed to the signal input on the ADC chip. The 8 bit
number from the ADC connects to the Amiga 8-bit parallel
(printer) port. The parallel port also supplies power to the audio
digitizer circuit by lines 14 (+5V) and 22 (Ground).

Pins 2 through 9 on the parallel port are 8 bi -directional da ta
lines. These pins are usually labeled DBO-DB7 in computerese.
The Amiga computer reads the 8-bit binary number outputted
from the ADC chip using these pins. Pin 14 supplies the +5 volts
needed to power the project. Pin 22 is the ground. Pin 1 is a
strobe pin that connects to the ADCs CE (chip enable)
and RD (ready) pins.

The project is simple enough to build and wire
without using a custom made PC board.

Testing the Circuit
Testing the circuit depends upon which audio

software you are using. Adjust the volume control
until you have the appropriate recording level on your
software.

If the circuit doesn't work, recheck your wiring
against the schematic.

Right: This "bare bones" project will allow you to
produce sound files for other projects .

Voice Recognition
There is an interesting voice recognition program you can

run using this digitizer. The magazine and accompanying pro­
gram disk is available from PiM Publications, Inc. The magazine
to order isAC' s TECH Volume 2 Number 2. An updated version
of the software is also available on the AC's TECH Volume 3
Number 4's accompanying disk.

Caution: All projects are supplied on an "as is" basis. Although
the author has built and tested this project for this article, neither the
author, PiM Publications Inc., or its employees bear any responsibility
for this project or its intended use.

DJComputers.cz

Build Your Own SOUND DIGITIZER

Parts List
Ul Maxim 165 ACPN Chip
U2 LM-386 Audio Amp Chip
Ql PN2N2222 Transistor
Rl 100Kohml/4watt
R2,R4 4.7K ohm R3 16K
R5 lK
R6 10K Potentiometer
R7 220 ohm Cl 100 pf
C2 4.7 uf
C3 220 uf
C4 10 uf
C5 100 uf
C6 1000 uf
Mise:
1/8" input jack
microphone
DB-25 Male connector
PC board
project case

Ul Maxim 165ACPN @$15.95eachareavailablefrom:
Images Company
POB 140742
Staten Island NY 10314
(718) 698-8305
add $5.00 Postage & Handling NYS residents add
8.25% sales tax
All other parts and components are available from
your local Radio- Shack.

Statement of Ownership, Management and Circulation
IA. Title of Publication: AC's Tech for the Commodore Amiga. I B.
Publication No.: 10537929. 2. Date of Filing: 1011193. 3.
Frequency of Issue: Quarterly. 3A. No. of Issues Published
Annually: 4. 3B. Annual Subscription Price: $44.95 US. 4.
Complete Mailing Address of Known Office of Publication: P.O. Box
2140, Fall River, MA 02722-2140. 5. Complete Mailing Address of
the Headquarters of General Business Offices of the Publisher: P.O.
Box 2140, Fall River, MA 02722-2140. 6. Full Names and Complete
Mailing Address of Publisher, Editor and Managing Editor: Publisher,
Joyce A. Hicks P.O. Box 2140 Fall River, MA 02722-2140; Editor,
Donald D. Hicks P.O. Box 2140 Fall River, MA 02722-2140;
Managing Editor, Donald D. Hicks P.O. Box 2140 Fall River, MA
02722-2140. 7. Own er: PiM Publications, Inc. P.O. Box 2140 Fall
River, MA 02722-2140; Joyce A. Hicks P.O. Box 2140 Fall River,
MA 02722-2140. 8. Known Bondholders: None. 9. For Completion
by Nonprofit Organizations Authorized to Mail at Special Rates: Not
Applicable. 10. Extent and Nature of Circulation: (X) Average No.
Copies Each Issue During Preceding 12 Months; (Y) Actual No.
Copies of Single Issue Published Nearest to Filing Date. lOA. Total
No. Copies: (X) 7,176 (Y) 6,382. lOB. Paid and/or Requested
Circulation: I. Sales through dealers nad carriers, street vendors and
counter sales (X) 2.178 (Y) 3,518. 2. Mail Subscription (X) 1,573
(Y) 1.232. 10C. Total Paid and/or Requested Circulation: (X) 3,751
(Y) 4,750. 100. Free Distribution by Mail, Carrier or other Means
Samples. Complimentary, and other Free Copies: (X) O(Y) O. IOE.
Total Distribution: (X) 3.751 (Y) 4,750. IOF. Copies Not Distrib­
uted: I. Office Use. Left over, Unaccounted, Spoiled after Printing
(X) 2,074 (Y) 1.632. 2. Return from News Agents (X) 1,351 (Y) O.
lOG. Total: (X) 7,176 (Y) 6,382.

AMIGA 588/2888/3888 Parallel

Input

'7 \ldd

rf7 R6 Jack n ,/8 ..

+5\1 \ldd

\ldd

6 18 5

7
3

8
16

14 U1 7
U2 2

13
+

12

1.1 1
C5;;;

18 2

9 1.7

15 3

Figure 2

24 AC'sTECH

..

DJC
om
pu
ter
s.c
z

Technical Writers
Hardware Technicians
Programmers
Amiga Enthusiasts

Do you work your Anliga to its limits? Do you do create your own pro­
grams and utilities? Are you a master of any of the programming lan­
guages available for the Anliga? Do you often f"md yourself reworking a
piece of hardware or software to your own specifications?

If you answered yes to any of those questions, then you belong writing
for AC's TECH!

AC's TECH for the Commodore Amiga is the only Anliga-based technical
magazine available! We are constantly looking for new authors and fresh
ideas to complement the magazine as it grows in a rapidly expanding
technical market.

Share your ideas, your knowledge, and your creations with the rest of the
Anliga technical community--become anAC's TECH author.

For more information, call or write:
AC's TECH

P.O. Box 2140
Fall River, MA 02722-2140

1-800-345-3360

DJComputers.cz

26 AC's TECH

When most people think of C++, they think
of the support it provides for Object-Oriented
Programming (OOP). They forget that c++ is
an extension of C and can, with some effort, be
used instead of C. Advantages to a C program­
mer in using C++ include stronger type check­
ing, more consistent treatment of user defined
and built-in types, and some powerful exten­
sions to C. The purpose of this article is to
demonstrate how C++ can be used as a better
version of C, and to show that C++ is useful in
a C programming environment without the need
to learn the 00 paradigms that are supported
by c++. I do not mean to imply by this that
Object-Oriented Programming is in some way
inferior, or even that the way that C++ imple­

00 concepts is incorrect. I just feel that at
this time, with the lack of C++ tools in the
Amiga community and the heavy emphasis on
C, that this method is the most logical way to
start using C++.

by Paul Gittings

DJC
om
pu
ter
s.c
z

A variety of options await the
C programmer

I would even go so far as to recommend that all C programmers get
a c++ compiler and start using itto compile their C code. For a start, C++
has stronger type checking than C and this will require extra discipline
on the part of the programmer but s/he will be rewarded with wasting
less time finding irritating bugs. C++ also has some simple extensions
to standard C programming concepts. Hopefully I will convince
readers that using C++ as a better C is a useful way to introduce oneself
to C++. Also, I hope that having mastered these extensions that you will
go on and explore the full power and benefits of all the features in C++.

C Compilers for the Amiga, with the exception of some of the
public domain compilers, are ANSI C compatible. Since most C pro­
grammers tend to be more familiar with K&R C, I will explain new C++
features relative to K&R C. Programmers already familiar with ANSI
C will have encountered some of the features discussed in this article.
But be warned, there are subtle differences between the way ANSI C
and C++ implement some of them.

The reference I used for K&R C is "The C Programming Lan­
guage", first edition, by Brian W. Kernighan and Dennis Ritchie. For
ANSI C I used the following three books; "The C Programming Lan­
guage Guide", second edition, by Brian Kernighan and Dennis Ritchie;
"The Waite Group's Essential Guide to ANSI C" by Naba Barkakati;
and "Standard C" by P. Plauger and Jim Brodie. During the writing of
this article I used two ANSI C compilers to verify the operation of ANSI
C ; a registered version of Matt Dillon's DICE C compiler (version
2.06.19, with the DICE pre-processor supplied with Comeau C++), and
Markus Wild's port of version 2.3.3 of the Free Software Foundation's
gcc compiler (see sidebar article "Swiss Army Knife Compiler") using
the "- ansi" option (this option disables many extensions in the gcc
compiler and results in a closer conformance to the ANSI C standard).

The reference I used for C++ is "The Annotated C++ Reference
Manual" by Margaret Ellis and Bjarne Stroustrup, May 1992 (I will refer
to this book as ARM). I currently use both Comeau C++ (with DICE as
a back end, see sidebar article) and Markus Wild's port of version 2.3.3
of g++. I have come across places where g++ does not conform to the
C++ language as defined in the above book; I will identify such
discrepancies.

The first new feature of C++ (which is also supported by DICE) we
will look at is very simple to understand and use. It is a new comment
style. This is a comment to end of line delimiter, / /. Anything that
appears after the / / up until the end of line is treated as a comment:

int number; / / number of elements read
/ / FILE "'debug_file;

A simple feature, but one that I find most useful.

Arguably the most important extension of ANSI Cover K&R C is
function prototyping. A function prototype is used to specify the
number and type of arguments required by a function. Function
prototypes can be used in both function declarations and function
definitions. Without the information supplied by a function prototype
a compiler cannot make a decision on whether or not a function call has

the correct number of arguments or if they are the correct type. No such
capability exists in K&R C. So a K&R C compiler cannot know if a call
to a function has the correct number or type of arguments. Consider the
following example of a function declaration in K&R C:

extern long dOBomething(); /* declare function */
main () { long result; result =

dosomething(1, 3, 6, "STRING");

The K&R compiler would not know how many arguments
dosomething expects, so the compiler could make no decision as to
whether the call specifies the correct number and type of arguments. In
K&R C the only thing that function declarations can be used for is to
specify that a function returns something other than an int; in the above
example the declaration of the dosomething function specified that the
function returned a long. There is no way K&R C, by the use of function
declarations, can inform the compiler of the correct type or number of
arguments that a function is expecting. This changed in C++ with the
addition of function prototyping and a watered down version was also
later included in the ANSI C standard.

In C++ and ANSI C a declaration can now be used to specify the
number and type of arguments. Declarations of this type are used by the
compiler to check that function calls have the required number of
arguments and are of the correct type. A function declaration in C++
and ANSI C for the dosomething function above might look like:

extern long dosomething(int bold_flag, int print_count, int
length, char *string) ;

As you can see the declaration states the type of each of the

arguments and a name for each argument is supplied. The argument
names used in the declaration do not need to be identical to the names
used in the actual function definition, only the types need to match. In
fact the names can be left out of a function declaration:

extern long dOBomething (int, int, int, char*);

For readability it is usually a good idea to leave the names in. In
ANSI C and C++ the function prototyping format is also used in the
function definitions themselves. For example the main function is

VOLUME 4, NUMBER 2 27

DJComputers.cz

A Better Way to C
usuall y defined as:

int maine int argc, char *argv[])
Where as in K&R C the usual definition iSi

int maine argc, argyl int argc;
)

char *argv [] ;

Undeclared function s in ANSI C are treated as they would be in
K&R C; that is, the function is assum ed to have a return type of int and
have any number of arguments. C++ is stricter than this, and a function

can be called only if it has already been declared or defined in the scope
of the call. The following file would compil e successfully under ANSI
C and K&R C but would result in a compile time error when compil ed

with a C++ compiler:

int functest () int result;
result = unknownFunc () i /* undeclared function * /
return result; }

g++ is not as strict as it should be and it will compile the above
treating unknownFunc as a function which returns an int. It will,
how ever, generate a warning, which states that unknownFunc is an
undeclared function.

C++, unlike ANSI C, also requir es that a function declar ation must
contain a function prototype. That is, all the argument typ es must be
specified in the function declaration. By making this mandatory, a C++
compiler is always assur ed of being able to check function calls for the
correct number and type of arguments.

This is all well and good but suppose you want to write a function
like printf which has a variable number of arguments .

In K&R C (and in ANSI C) to declare such a function is easy since

the compil er assumes an unknown number of argum ents anyway.
Since C++ now forces you to declar e the number and type of such
arguments how can you write a function with a variabl e number of
arguments? Well, both C++ and ANSI C have a standard way of
declaring a function with a variable number of arguments. Such
definitions use ellipse s, "" ." to indicate zero or more additional vari­
ables of an unknown type. For example

int DlY-print (char *format, ...) i

Defines a function with one or more arguments. Note, ther e should
be at least one argument specified before the ellipses . This leadin g
argument is required by a set of macros used to access the trailing
argum ents .

Accessing a variable number of arguments in the earl y days of C
programming required machin e specific tricks which were nearly al­
ways non-portable between different mach ines. I once spent the better
part of two days trying to figure out why a compiler, which work ed on
a 68020 based machin e, would not work when recompiled on a Sun
SP ARCStation. The probl em was due to the tricks used to access a
variabl e number of argum ents in a function. To get around this
portability problem, ANSI C define s a set of macros that can be used to
access a variable number of argum ents. The macros are def ined in the
header file <stdarg.h >. The C++ Reference Manual also recomm ends
that these macros be used when accessing a variable number of
arguments from within a C++ function. For these macros to work

, ·l1sing Comeau C++ 3.0 with DICE
t:oMEAu c++ 3.0 R:>R DiE AMIGA officially supports SAS/C version 5.108
and above as well as Manx Aztec C version 5.Od and above. The manual

,states that other C compilers should be able to work as back ends to
'Comeau C++. The manual also warns that Comeau Computing will not
.guarantee that Comeau C++ will work with any but the supported
compilers. I took a bit of a gamble when I ordered Comeau C++ since
I do nOt own one of the supported C compilers. 1 do however own a

. version of Matt Dillon's DICE C compiler (version 2.06.19).
'. ". I was aCtually very surprised at how easy it was to incorporate

. 'DICB into Comeau C++. Ifollowedthestandardprocedureofinsta\llxlg
Comeau C++ onto my hard drive. However, when the install script

me which of the supported compilers I used,l respond no to each
' .. if the compilers listed. After the install script had finished, everything

been copied from the distribution disks to my hard drive except for
. t:be header files.

Part of the installation procedure is to create a set of C++ headet
files t.sed on the C header files used by the C compiler on the system.
fiiince the install script does not support DICE I had to create the C++
_der files myself. I first created a directory into which the C++ header

be stored, called dinclude (this directory was created in the
SI\IIIe as the rest of the Comeau directories on my hard drive).
Next I used the supplied utility c30/include to convert my DICE and

header files.
This program takes two arguments; the first argument is the name

,of the dire1:tory in which you want to store the C++ files, the second is

28 AC's TECH

where the C files can cwTently be found. On my system I used;

e30/illcluo. 41 11lde

'Thi,s worked up to a point, On my system there is a symbolic link
AmigaDOS

include files; apps:ce/2.Q/JOclUde. The include utility seemed to have
a problem with this symbolldinkand terminated before converting all

. thefilea.
the IIhd th\!Qtepeated the conversion process in
two steps:

4belDle IIIIII:UJIIIII. . '*"I1r iI1IMIlade/ailla20 e301
illclud8 .41Dcl __ r-'2.OIiaclllOe

This seems to haVe warW utile .iildude utility seems to
always prinfoutwhatappeare te-be an etror when it finishes processing,
I am nOt'a if is correct.

. The next step was to copy the,standard Comeau C++ headers from
the fitat installation dislt onto my hard drive. This was easily achieved
with; . ,

As part of their)sta.llation the install script creates a file called forS, into

'I . . .

DJC
om
pu
ter
s.c
z

A Better Way to C
however, there must be at least one fixed argument. Good examples of
using <stdarg.h> can be found in the second edition of "The C Program­
ming Language" pages 155-156 and the ARM pages 146-148. The use
of these macros is the only guaranteed way to writ e portable code to
access a variable number of arguments.

It is possible in C++ to declare a function with an unknown number
of arguments and no leading argument;

int oldc(...);

which states that oldc has any number of arguments including
zero. Since there is no fixed argument, the <stdarg.h > macros cannot be
used. Thus there is no guaranteed way to access the arguments to
function olde. This was included in C++ to provide an equivalent to
K&R C's unchecked function call, and has the same portability prob­
lems. Don't use it!

In C++ and ANSI C you can also explicitly tell the compiler there
are no arguments to a function by use of the void type . The following
declares a function which has no arguments :

int noArgs (void);

In C++ the following also declares a function with no arguments:

int nOArgs () ;

where as in ANSI C it would be interpreted as a declaration of a
function with any number of arguments .

to the s:user-startup file. 1 had to change the auJsn for <;:C3Oinclude: in
this file to point to the dJnclude direc;tory;

... l"" CClOlllal,.... ·
, .

Part of the . • venom 01 Matt

Dillon'" C ... thf '1 checked the '
version number of thiS copy (;f '(dcpp -v) and since it was newer
than the version 1 currently hadtriiJraned o.n my system I it from
c30 .to OCC:bin. 1 then had to change assign in the file furS :

... l"" DICS. DClC:bl ..

At this point I decided to actually try out Comeau C++. I did not really
expect anything to work since! thought I would still have to change the
ARexx script, ARexx30/ como.rexx, to WOl!k with DICE. First I executed
forS to set up the assigns required by CotrIeau C++. Then I tried to
compile one of the test prOgrams supplied with Comeau C++, rx
ARexx30/como.rexx -V cctest.c.l was a bit surprised by the result.
While the compile did not work, the script had identified the fact
that I used. DICE and used' the DICE compiler with what, at first
glance, looked like the cOrrect arguments. The compile failed because
the DICE linker, dlink, could not ,find the link bbraries specified. by the
como script . On my the DICE standard link libraries are called
c.lib and amiga20.lib . The como SCript, however; was Using cl.lib and
amiga120.lib. This was easily Qxed. by' editing the como.rexx file and
making the cha.nges (lalso changed the ARexxl c.rexx file
but I'm not sure what this is used for). There are two spots in como.rexx

Void is a new typ e in C++ and ANSI C. As well as its use in the
above declaration, it can also be used to indicate that a function does not
return anything:

extern void noReturnValue (void) ;
void
noReturnValue (void)

/ / do something
return; }

Also, in C++ and ANSI C a pointer to a void should be used as the
generic pointer. This is a role that was fulfilled by char* in K&R C. For
instance in K&R C the function malloc was declared to return char*, in
C++ and ANSI C it is declared to return void*.

While both C++ and ANSI C support the void type there is
however a difference in their treatment of void pointers. In ANSI C a
pointer to a void can be assign ed to a pointer to any other type without
a cast:

char *buff;
buff = malloe (); / / malloe returns void*

In C++, however, this is an error ; you have to explicitly cast the
void pointer to the appropriate type:

buff = (char *) mailoe (SIZE _OF _BUFFER) j

Again, g++ differs to the "C ++ Reference Manual" as it will accept
such assignments without a cast ; it does, however, produce a warning

" ,
from which a call to dUnk is made, and the library names in each ofthecn. t

had to be changed. . • .

I copied the modified comO.rexx script file to REXX: where
all my ARexx 5Cripts. I added the fileforS to my systems
file. Then I added the followjng alfus to my systems

I then rebooted my machine and Comeau C++ has worked fine c>n."
system ever since (with the one caveat that I cannot use stucture .. '
typessincetheversionofDICEthatI use does notsupportthem) . lbave ·
not had to make any ch.anges since I made the above few. .1 may ;,
however do a few modifications to the como.rexx file to get it to 'priI)r '.

out fewer messages and to hard code the fact 1 use DICE into it Lit " • , . c. .
currently scans the system list of assigns to figure out which compJ.h:r ,."
is installed) . Also I may change the como.rexx script to use the +al o.g .'
as a default option rather than +aO; this causes the Comeau C++
compiler . to output ANSI function declarations rather than K&R style ..
declarations, DICE seems to work better with the ANSI

So you can see that configuring Comeau C++ to work wtth
DICE is a fairly easy procedure . But I must again repeat that DICE is not
supported by Comeau Computing as a back end to Comeau C++
neither they, nor I, can guarantee that you won't have any proj:llems.
However, in my current use of Comeau C++ I have not encountered any .
problems with this combination . . , "

, ,

VOLUME 4, NUMBER 2 29

DJComputers.cz

A Better Way to C
message .

Since I have used malloc in the above examples I should pOint out
that C++ has two new operators which replace malloc and its compan­
ion function free, called new and delete. new is used to allocate memory
and delete is used to free it up again .

int -range;
/ I declare pointer

/ I get some storage
1/ free the storage

range = new int i
delete range;

In the above fragment note that the new operator accepts the name
of the type that you are trying to allocate space for, as an operand . You
do not need to cast the result of the new operator as it returns a pointer
of the correct type (a pointer to the operand type). Unlike malloc you
do not have to specify how big a space to allocate for simple types or
structures. However, as with malloc, you should check that the alloca­
tion of space was successful by checking that the pointer returned is not
equal to zero. Also, the space allocated by new is not guaranteed to be
initialized , but this can be accomplished for simple types by using a
slightly different syntax

int ·P i
p = new int(O); 1/ allocate and initialize to O.

The allocation and deallocation of arrays also requires a different
syntax

char ·buf; / / declare pointer
new char(SO] j / / allocate array of 50 char
buf; 1/ deallocate array

buf =
delete [J

• • ,.,

h\ the world at Ullix the COJDPUer is (me of tl)e best known
around. One reUon for '!biii iS'that it is value for

In. the first place itis not one bUt three: a C compiler
)oth ,K&tR are c:oimnand line

a CHCOIilpiler and an compfier.lt is also freely
·iAriirlliutable. Who ' would prodUce-eUch: an item for tree? '. '.
" t,. ,Gee is a product, if. yoU can it 'tl\at, of the Free Software

(FSF). The . FSF is Ii who are
to combat software hoarding (ie copyright) of large software
by writing quality software and D'IAIkiDg it freely distributable .

, freely diStributable they are npt ·.in the-Public; Domain ; they are
covered bY the GNU PUBLIC w!;Uch some people
as,t!te,"copyleft". Au fedpientof LPJalSTamcovered by the

you are You are
. under certapt obligations, these lrIcllide;

• I.

ofthei,r rights under the
.

b) in the case of modification, make it clear that you have modified the
program.

: ... < c)make the source code ofyorirprogJ:am available to people who use it.

30 AC's TECH

Note that when deallocating an array you have to inform the delete
ope rator of this by specifying [] before the pointer name. In older C++
compilers you also had to put in the size of the array, but this is no longer
required. You cannot use new to initialize an array, or structure , as is
possible when allocating space for simple types.

There are a number of items to be aware of when using the delete
operator. If the pointer you are del eting is not zero , it must be a pointer
that was returned by new . The result of calling delete on a pointer not
obtained from the new operator is undefined in C++ and the outcome
will usually be harmful. Consider:

void bad () char buf [30J; char
*buf! = buf; char *buf2;

delete bufl; / / error, not allo cated with new
buf2 = new char [IO]; buf2++i 1/ increment pointer returned
by new delete [] buf2; / / error!

return;

In addition the result of deleting an array without specifying the
[] is undefined, as is deleting an individual item with the delete [] syntax.
It is unlikely that a C++ compiler will always be able to detect the
occurrence of all such errors . It is safe to assume that only damage will
result from such operations and it is wise to do every thing possible to
avoid such situations.

It is possible to delete a point er with the value zero, this is
guaranteed to be harmles s. Thus, deleting allocated space does not
require checks to see if the items being deleted were in fact successfully
allocated by new. This can simplify error recovery code:

void good()
{ char *p = new char[50];

The GNU in the name of this license stands for "Gnu is Not Unix". The
. GNU project is one of the major projects of the FSF; the aim of is
to create a freely redistributable .operating system which is compatible
with Unix. Since you need a compiler to write an OS, one of the first
programs to make an appearance out of the GNU project was the GNU
Ccompiler,gcc. Each new reiease of gcchas seen it grow better and more
powerful.

Version 2,0 included not only the C compiler but also incorporated ,
g++ (which is the GNU C++ compiler) and an Objective-C compi¥!r.
Due to a mammoth piece of wc:>rk, Markus Wild has ported several
version of GCC to the Amiga; the lastest version I am of aware of is
version 2.3.3.

Markus not only ported the compiler (the core C compiler and the
C++ and the Objecti.ve-C compilers) but also numerous support tools
(assembler, linker, archive maintainer, Jibg++ etc). He also wrote a
library to emulate many functions available in Unix libraries. As
required by the copyleft, Markus included the source to all his changes
in the form of diff files; they list the differences between the FSF release
.and Markus' version; another · program called patch can be used to
apply the diffs to the FSF files to produce the Amiga specific version .
NOTE: neither diff or patch are supplied with Markus' distribution of
GeC, however both are available on various Fish Disks .

To give you some idea of what you get in the GeC distribution here
is a list of the mjljor components:

1) GeC 2.3.3. This compiler will compile C (both ANSI and K&R), C++
and Objective-C (there is a problem with Objective-C however).

DJC
om
pu
ter
s.c
z

A Better Way to C
allocation worked

H(p!=O)
}

1/

II p mayor may not be zero here delete [J p;

One final warning on delete; the value of the pointer after a delete
operation mayor may not be changed. Don 't assume that it is set to zero
and never use a pointer after it is deleted .

The new and delete operators can of course be used to allocate and
deallocate structures:

int high;

limits ;

struct limits {
};

void dumtest (void)

delete limits-p;

int low;

limits *limits...,p = new

In the above, the call to new is made when initialising the pointer
limits _po Also, notice that limits_p was declared to be a pointer to limits
and notasa pointer to struct limits as itwould inANSIC. This is because
c++ automatically creates a new type for any tagged structure . This
does away with one of the common uses, in C, of the typedef statement.

C++ and ANSI C both allow structures to be passed as arguments
to, or returned as a result from, a function (DICE, at least the version I
have, does not support stucture return types). In K&R C, this was not
allowed and a pointer to a structure would have to be passed instead.
Passing entire structures can be inefficient since, when a variable is
passed to a function, the function effectively has its own private copy
of the structure and this copying of large structures can incur a heavy
price. An advantage of passing a structure, or any variable for that
matter, rather than a pointer to it, is that any changes the function makes

2) gas. The GNU assembler.
3)gld. The GNu linker, thislihb
files.
4)hunk2gcc. A program
libraries (eg. amiga.lib) into •
5) ar and ranlib. Programs
6) libg++. The GNU C++ library, tii.ifuI clas8e8 and
libraries including a streams Ijbre.ly. •
7) ixemul.library. An Amiga by Markus which
contains many of the standard ')'here .. also various
link libraries included to allow access to $i81i»rary. .

8) Unix style man pages are supputd fpJ most programs and
ixemul.library routines. A program called "manN is al80 supplied to
read them.
9) various header files (C and C++). Does not include Commodore
Header files (which have to be obtained from ComInodore).
10) Various documentation in the form of info files, and infoview, a
program to browse this online information.
There are however a number of things aware of with this release
of gcc 2.3.3:

1) There are no Objective-C includes; therefore lIS far as I can tell there
is no way to use it since all the Objective-C programs I have seen start
with # import <objc/Object.h>
2) The only information supplied on g++ is a man page.
3) There is no documentation on the Objective-C compiler.

to the structure it makes to its own private copy; the changes are not
made to the structure in the calling program. This type of argument
passing is called "pass by value" and is the only way that K&Rand ANSI
C allow arguments to be passed to a function. This is why, in K&R and
ANSI C, if a variable in a calling program is to be changed by a function
call then a pointer to the variable has to be passed to the function. This
places the onus on the person writing the function calls to ensure that
a pointer, rather than a variable, is passed . To place the responsibility
for such decisions back where it should be, C++ introduces another
method of argument passing, "pass by reference".

When an argument is passed by reference no local copy is made, in
fact the local variable is a reference to (same as) the variable in the calling
program . Changing the value of the local variable will change the value
of the variable in the calling function.

To indicate that an argument is to be passed by reference the &

operator is used in function declarations and definitions. The use of call
by reference arguments removes the need for passing the address of
variables in function calls and explicit pointer dereferencing inside the
functions . The following is a very simple example of a function which
accepts one argument that is passed by reference

#include <8tdio.h>

1/ increment the argument passed by reference void
increment (int &1) { i++i return; }

int main() int my_value = 0;
increment (my_value); printf("my_value = %d\n",

my_value) ;
return 0;

4) The object files produced bygcc/g++ are not the same as Amiga object
files; ie, you can't use an Amiga linker to them. Also the GCe linker
gld does not understand the format of Amiga object files (or libraries).
To help get around this problem Markus has included a utility called
hunk2gcc, which will take an Amiga object file and convert it to a form
which can be used with GCe's Unix style linker.

Due to the size of this distnbution you are unlikely to &ee this
compiler on a Fred Fish disk. There was some talk awhile back on the
Internet about this compiler being included in a CD-ROM containing
various non-commercial Amiga programs (PO, Freeware, Shareware
etc), but I do not know if the CD-ROM was ever released. [t is,however,
freely available on the Internet; check the ftpsite amiga.physik.unizh.ch.
To install and run this compiler you will need; a hard drive with at least
8MB of disk space free, about 5MB of memory, and AmigaDOS 2.04 or
later is recommended.

Markus has done a first rate job on por$g GeC and related tools
to the Amiga. If you need a low cost C or C++ compiler and you are
willing to put up with the problems of the strange (to Amiga eyes
anyway) format of the object files, Markus' port of GCC could just be
what you need. - PG

31

DJComputers.cz

What's
the best

way
to improve ·
productivity

on
your

Workbench?

DJC
om
pu
ter
s.c
z

With
Amazing Computing

Amazing Computing/or the Commodore Amiga, ACs GUIDE and AC<;
TECH provide you with the most comprehensive coverage of the Amiga.

Coverage you would expect from the longest running monthly Amiga
publication .

The pages of Amazing Computing bring you inSights into the world of
the Commodore Amiga. You'll find comprehensive reviews of Amiga

products, complete coverage of all the major Amiga trade shows, and 1III
hints, tips, and tutorials on a variety of Amiga subjects such as desktop

publishing, video, programming, and hardware. You'll also find a listing
of the latest Fred Fish disks, monthly columns on using the CLI and

working with ARexx, and you can keep up to date with new releases in
"New Products and Other Neat Stuff."

AC's GUIDE to the Commodore Amiga is an indispensable catalog of all
the hardware, software, public domain collection, services, and informa­
tion available for the Amiga. This amazing book lists over 3500 products

and is updated every six months!

TECH/or the Commodore Amiga proVides the Amiga user with
valuable insights into the inner workings of the Amiga. In-depth articles

on programming and hardware enhancement are designed to help the
user gain the knowledge he needs to get the most out of his machine.

Call1-800-345-3360

DJComputers.cz

A Better Way to C
will produce the output:

my_value = 1

In general you should declare arguments to be pass by reference
when you wish changes made to the variable in the function to be
propagated · back. On the other hand, when you don't want such
changes propagated back you should use the standard C method of
argument passing, pas s by valu e.

As stated earlier, pass by value can be an inefficient way to pass
large structures. If the function requires read only access to the structure
it might be better to declare the argument as pass by reference and also
specify, with the const typ e specifier, that it is not to be modified. const
is new to C++ and ANSI C; it indicates to the compiler that a variable
is to be treated as if it is read only. Any attempt to modify a variable
specified as const will generate a compile time error . In the following
C++ exampl e, the routin e print_limits demonstrates how to use a
combination of const and pass by reference as a more efficient version
of pass by value

UMax = %d,

#include (stdio .h>
struct limits{ int maXi

void print_limitB (caDst limits& range)
int min ;

Min = %d\n", range.max, range.min);
return;

int main{) limits my_ limits ;
my_ limits.max = 10; my_limits.min = 0;

print_limits (my_limitB);
return(D) i

);

printf (

If an attempt were made in print_limits to modify the values of

A Brief History of C Be C++
C++ is first and foremost an extension to C. A C++ compiler will

compile many C programs without any changes having to be made, and

it will compile many more with just minor changes. The reason for this
. is that C++ has evolved from C and some thought was given to
backwards compatibility during the design of the C++ language .

The C programming language in one form or another has been
around since the late seventies. The C language was originally designed

and implemented by Dennis Ritchie on a DEC PDP-ll at AT&T's Bell
. Laboratories. About 1978 the "standard" reference for this language

was published; "The C programming Language", first edition, by Brian·

Kemighan and Dennis Ritchie. This version of the C language became
known as "K&:R" C, after the authors, and later in some quarters as

"Oassic" C (this name was probably inspired by a cola advertisUtg

campaign) .
C was then implemented on a large number of machines under

various operating systems. It was found that the original C standard

was ambiguous in places and even incomplete in some areas (for
instance it did not specify the C library). This resulted in many compiler

implementors using differing interpretations of the standard. In
addition, a number of new features were being added to some imple­
mentations. The result, a whole swarm of various C dialects with many

34 AC's TECH

range a compile time error would occur indic ating that an attempt had
been made to modify a read onl y value.

Another use of const is as a replacem ent of pre-processor macro s
used to define constant values. The following macro:

could be replaced by

A const without a type specified is assumed to be an int so the
above could have been written as:

This use of const variables has a number of adv antages over
macros; they can be type checked by the compiler and the name of the
variable will show up in a symbolic debugger and, of course, the usual
scoping rules apply to such variables. In ANSI C howev er, such const
variables cannot be used as the size of arrays, for example the following
will not compile under ANSI C:

canst int MAX_ BUFFER = 20; char buffer [MAX_BUFFER] ;

As far as ANSI C is concern ed MAX_BUFFER is still a variable! In
C++, however, the above will compile correctl y.

Another feature of C++ which is sometimes used instead of macro
constants is enum erated types. An example of an enumerated type, in
C++ and ANSI C:

incompatibilities between them. Many of the new features been added

being developed in another AT&T language project.
In 1980 Bjame Stroustrup added classes, function argument type

checking and several other features to K&R Cj the resulting language

was called "C with Oasses". This was a fore runner of C++. Stroustrup
continued with the development of "C with Classes" until about 1983
when it was redesigned, extended, reimplemented and renamed as

C++. C++, after a few refinements, became generally available in 1985.
C++ is still evolving and being refined . While an ANSI (ANSI X3J16)
and ISO (ISO WG21) committee have jointly been working on a C++

language standard since 1991 (ANSI has been working on a standard
since 1989) a standard has not yet been finalized. The current pseudo

standard for C++ is the book "The Annotated C++ Reference Manual"

by Margaret Ellis and Bjarne Stroustrup; this book is usually referred to

in most C++ literature as the ARM This book is also the base document
for the ANSI C++ standardization effort; chapter 19 lists the resolutions

made by ANSI/ISO standardization committee so far. These resolu­

tions aid compiler implementors in their implementation of various

language features so that when the standard is finalized their imple­

mentations stand a better chance of conforming to that standard .

Currently when C++ compiler implementors say that their com­
pilerconforms to version 3.0 of C++ they are usually referring to the C++

language as implemented by Release 3.0 of AT&T's C++ to C translator,
ciront, which in turn is based on the current content of the ARM.

Comeau C++ 3.0 With Templates for the Amiga is a licensed port of the

DJC
om
pu
ter
s.c
z

A Better Way to C
enum days { Monday, Tuesday, Wednesday, Thursday,

Friday I Saturday, Sunday} ;

The enumeration constants Monday - Sunday are assigned , by the
compiler , integer values starting at O. It is possible to determine specific
values for the enumeration constants and they do not have to be unique.
The following is valid in both ANSI C and C++:

enum Boolean { true=1, yes=1, on=1,
false=O, no=O, off=O };

The enumeration constants can be used in much the sam e way as
macro const ants are usually used. You can of course declare variables
of enumerated types .

A variable of type enum days can be declared in both ANSI C and
C++ with

Just as with struct, C++ automatically create a type when it en­
counters an enum. So the above declaration can be written in C++ (and
this is the preferred way) as:

The enumerated type can, as can struct types, be used in cast
operations

(days) 0;

a_day = (enum days) 0 ;
/ I c++ only

1* C++ or ANSI C * 1

It is of course possible in ANSI C to create an enumerated type with
the typedef statement and achieve similar results to C++. If days had
been declared as follows, the enum could also be dropped in ANSI C
variable declarations and casts :

typedef enum { Monday, Tuesday I Wednesday i Thursday I

Friday, Saturday, Sunday} days;

The treatment of enumerated types differs somewhat between
C++ and ANSI C. As stated earlier, when a compiler of either type
encounters a definition of an enum type it assigns an integer value to
each enumeration constant (Monday through Sunday above), starting
at the left with O. Since any enumerated type is a sub-type of int it is
possible to assign an enum value to an int variable. So in ANSI C and
C++ the following is legal, since Monday will be promoted to the int
value of 0:

int i = Monday;

However, ANSI C and C++ will treat the following differently;

This is valid in ANSI C but not in C++. The above will generate a
"type mismatch" error in C++ (however g++ seems to treat such a
statement identically to ANSI C). In C++ a distinct integer type is
created for each enumeration type, variables of one type cannot be
assigned values directly from another type; variables of type days can
only be assigned values of type days, ie Monday through Sunday, or
from other variables of types days. This is another example of C++'s

.... .,.......,.. _____________ ________________ ., stricter type checking over ANSI C. To perform such an assignment, if

.1;11,'0\1 of cfront. On the other hand g++ is not a port of cfront and
clUficuJt to figure out what version of cfront, if any, it does

to. g++ does seem. to have the features of cfront 3.0 but some
.. ReferenceManual .

g++ improves with each release and it is free.
While as yet there is no standard for the C++ language, theC crowd
have an ANSI/ISO standard for the C language (which specifies

• nUJDber of features that were originally found in C++), preprocessor
and theC library. This version of C is usually called ANSI C or standard

'.c. Compilers for the Amiga, with the exception of some of the public
dcmwn compilers, are all ANSI C compatible . It should be noted that
'SOIne compiler implementors will add features to their compiler which
are not in the ANSI standard . This is permissible but they should make

it clatr in their compiler documentation which features are not ANSI
compatible. Many implementors also have a flag for their compiler

which, when set, will produce an error during compilation if a non­
ANSI feature is used; gec for instance has a -ansi flag, which will
,d,isallow non-ANSI features.

Having standards and compilers that conform to that standard

. enables programmers to write code that is portable to other machines .
,.However, having a standard does not mean that that lan­

. . guage will not evolve in the future . Standard groups will continue to
......... ,>...... ,valuate new features an«i if it is found necessary, a new standard will

'. be released, or maybe, as in the case of C++, the changes may be too

iadical and a new language may be spawned. - PG

you really need to, you would have to cast the value to the appropriate
type.

C++ even has an alternative to the standard cast operator called
explicit type conversion . This new operator looks like a function call
and takes the form:

In the following example a float value is cast to an int value:

int i; i = int(2.2); I I cast float constant to an
int

Explicit type conversion also works for simple types you create,
thus to assign an integer value to a variable of our enumerated type days
any of the following could be used:

a_day = (enum days) 0; 1* ANSI or C++ *' a_day =
(days) 0; /1 C++ only a_day = days(O); II C++ only

Since structures are not considered simple types, explicit type
conversion in C++ will not work with structures. Thus the following
line will produce an error:

range .. limits(O, 0);

In fact it will produce a rather cryptic error message:

, limits' has no constructor

35

DJComputers.cz

A Better Way to C

Explanation of this error message requires that I own up to a little
white lie I told above. Explicit type conversion for structures can in fact
be made to work in C++. This requires the use of a new and powerful
feature in C++ called a class which can be thought of an extension of a
struct; actually in C++ a struct is just another name for class. In a class
you can define functions, called member functions, as well as data
fields. If limits had been declared with an appropriate member function,
called a constructor, the above type conversion would have worked.
The lack of such a function cause the above error message. An explana­
tion of classes and constructors is beyond the scope of this article, but
if there is enough interest an explanation of classes may form part of a
future article.

C++ has yet another feature which can also be used as a replace­
ment for some macros, the inline function specifier. This indicates to the
compiler that a function so specified be considered for inlining; that is,
when a call to the function is encountered, rather than generating code
to actually perform the call the compiler will insert a slightly modified
version of the function in place of the call. The compiler, may however,
choose not to perform the inlining due to the outcome of some inbuilt
heuristics. Also, most C++ compilers have an option to turn inlining off
(+d in Comeau C++); this option is useful when you want to debug a
program. When is inlining useful? Suitable candidates for inlining are
small functions of a few lines. The benefits are speed, inlined functions
are executed faster and in some case even memory is saved.

As you have probably guessed, inlined functions can be used
instead of macros. Consider:

#define SOR(a) ((a)· (a))

which can be replaced with the inline function:

1n110e int SQR(int a) { return a * a; }

Inline functions have a number of advantages over macro func­
tions; they use the standard function syntax and, since the types of the
returned value and arguments are specified, the compiler can type
check calls to the function.

A stranger addition to C++ functions is that function names can be
overloaded. This means that more than one function can have the same
name as long as they can be distinguished by argument types. Consider
the following:

XI

int IntTotal = 0;
float FloatTotal = 0.0;

void addToTotal (int x)

void addToTotal (float x)

IntTotal += x;

FloatTotal +=

The above C++ code defines two different functions called
addToTotal, one of which accepts an int value, the other a float. As long
as the compiler can distinguish between all instances of the function by
the number and type of their arguments any number of definitions can
be given. You could, if you were perverse, have all your functions called
g! Needless to say, such an occurrence is not what this feature was
designed for. An example of a better use would be in a sort library;
rather than have functions called such things as sortString, sortInt,
sortFloat etc, you could have all the functions called sort. The compiler
would be able to identify which routine should be called by the type of
arguments given in a function call.

36 AC's TECH

The more technically inclined readers may wonder how a C++
compiler keeps track of the differen t versions of the function and passes
this information to the linker; especially across compilation units. C++
encodes all functions names. This encoding, depending on the function
name and the type of each of its arguments, is referred to as name
mangling. In this way a unique identifier is generated by the compiler
for each of the overloaded functions. These encodings also allow for
type safe linkage across compilation units. Since the function names
that the linker will see actually includes information on the function
arguments, it guarantees that function calls will only be linked to a
function if the arguments in the function call and the function are of the
same type (ie, they have the same name). You can actually see these
encodings in assembler output from a C++ compiler or via a symbolic
debugger. Currently there is no debugger available for the Amiga
which is C++ aware, therefore some know ledge of the encoding scheme
will be required so that you will be able to decode the encoded function
names displayed by the current symbolic debuggers. A full description
of the encoding scheme is beyond the scope of this article, however to
get a feel for this encoding system, here is a simple example. The
following function declaration:

double nameMang(int an_int, float a_float,
char a_char, ...);

would be encoded as:

The encoding is made up of two parts, the function name and the
function signature (encoding of arguments). The two parts are sepa­
rated by " _" (two underscores), and it is recommended that you do not
use" _" in your own function names. In our example the first character
in the function signature is "F"; this indicates that the function is global
(or has File scope). This is then followed by four lower case characters,
one for each argument; "i" foranint, "f" for float, "c" for char and an "en

for the ellipses. Things get a bit more complicated with user defined
types; Comeau C++ comes with a utility called comofilt which will read
in mangled names from standard input until EOF, and then it will
output the mangled names together with the demangled equivalents
(see the 2.1B.notes file on disk one of the Comeau C++ distribution for
more information on comofilt). For a more detailed description of
function name encoding see the following; ARM page 122-127, The
Comeau C++ User's manual pages 16-17.

Now this function name encoding while necessary for C++ func­
tions will cause problems if you are trying to call C functions from your
C++ program. To be able to call a C function in C++ you have to tell the
compiler that the function is a C function so that the compiler will know
not to mangle the name. You do this by use of a linkage specifier in an
extern declaration

extern "e" int somecfunction (); 1/ declare a C function

The "c" tells the compiler that somecfunction is a C not a C++
function. Now to do this for all AmigaDOS functions would be a bit
laborious to say the least! There is an easier way; an extern statement
can be applied to an include file to indicate that it contains C function
definitions:

extern "c" (#include <exec/types.h> #include <execl
libraries.h> #include <intuition/intuition.h>)

DJC
om
pu
ter
s.c
z

A Better Way to C
You can even avoid this with Comeau C++ as it comes with a

utility, c30 I include, which will make C++ versions of all C include files.
Basically it creates a C++ header file of the same name as the C version
but which contains an extern "cn statement which then includes the C
version of the header file. For example the C++ version of exec/types.h
on my system contains:

extern lie" { #include "apps: cc/2. O/include/exec/exec .hn

If you want to create headerfiles to use in C and C++ programs you
can make use of the macro constant _cplusplus:

#ifdef _cplusplus extern He" { #endif
/* c function decelerations *1

#ifdef _cplusplus #endif

Another common problem encountered when using C++ in a C
environment is that C++ requires that a function be declared before it
can be used. If C++ encounters a function call prior to a definition or
declaration ofthat function, it will report an error. You must ensure that
you include the appropriate header files containing function declara­
tions for all functions that you call. The 2.0 Native Developers kit
available from Commodore (Part Number: NATDEV20), contains
header files which have declarations or prototypes for all Amiga
Libraries. These can be found in the include/clib directory. These
header files are not C++ ready and you will have to use an extern "cn
wrapper when including them in your C++ program.

In C++ as well as overloading your function names you can also
have several declarations of your functions which specify default
values for some or all of the arguments. These default values are
substituted for missing trailing arguments. For instance the following
declaration is for a function with two default values:

void moveTo(int x = 0, int y = 0);

The following are all valid calls to this function:

moveTo(); II moves to x = 0, y=O moveTo(S}; II
moves to x = 5, y=O moveTo{3,4); /1 moves to x = 30. y=4

It is only possible to define default values for trailing declarations.
The following is not a valid function declaration:

is legal.

void drawTo(int x = 0, int Y) 1
where as;

void drawTo (int X, int y = 0);

It is also only possible to call a function with trailing arguments
missing. The following which you might think would be equivalent to
moveTo(0,6) is illegal:

moveTo(, 6) 1 1/ illegal in c++

In general I think that default values should be avoided. I always
believe that when programming you should be as specific as possible
and the idea that you can leave out arguments to a function just because
the compiler will fill them in with default values goes a bit against the
grain. However, one use for default values that I would condone would
be their use to support backwards compatibility in new versions of
library routines. Suppose you had a library function called plop Window
which accepted four arguments; x, y, width and height:

boolean plopWindow (int X, int y, int width, int height);

which had been around for a long time and is used in a lot of code.
You now decide you need to add some extra functionality to the
function which requires an extra argument. You have a number of
options; you could create a new function called newplopWindow, you
could go around all your old code and modify all calls to the function
or you could use default arguments in the new version of the function
and its declarations:

boolean plopW!ndow(int X, int y, int width, int height,
int doHicky=O) ;

Old code which calls plop Window with only four arguments
when recompiled with the above declaration will pick up a default
value of 0 for the fifth argument doHicky. This assumes that a value of
o for doHicky will produce the old behaviour of plop Window.

Default value function declarations can be combined with scoping
rules to allow the behaviour of function calls to be changed somewhat
in different scopes:

extern void setPoint (int x, int y);

void sillyFunc (void) (set Point (0.6)
extern void setPoint (int x = 0, int y =0);

setPoint () ;))

g++ issues warning messages on the second call to setPoint.
While using default values it is possible to change the way func­

tions are called within different scopes, you cannot have functions
defined within functions, as you can in such languages such as Pascal.
C++ like C is not really a block based language in the same manner as
Pascal. However, both C++ and ANSI C have had, if you like, their
blockiness extended at least with regards to variables with theintroduc­
tion of new scope rules for variables.

In K&R C the scope of variables could be local to a function, local
to a file (compilation unit) or to the whole program. It is now possible
in both C++ and ANSI C to define variables which are local to a block.
A block being those statements contained within curly brackets (a block
is also, more formally, called a compound statement).

In ANSI C the declarations of any variables in a block must appear
before any non-declaration statements. C++ extends this so that a
variable can be declared anywhere within a block prior to its first use
(the DICE C compiler also supports this feature even though it is not in
the ANSI C standard). This feature was added to allow variables to be
declared when an initial value for the variable became available. Blocks
can of course be nested, here is a C++ example of some nested blocks
with each block having its own declaration of the variable i (DICE will
also compile this example):

lIn") ;

Block 2\n");

void whati (void) printf ("Entering Block

int i=100; Ildeclare first i
{ II start another block

int i = 77; II declare second i
(II start another block

printf (" Entering

printf(H

Entering Block 3 \n");
II 3rd i declared in "for" statement

for(int i=O; i < 1 i++) printf(" i=%d\n", i);
printf{" Exiting Block 3\n");

printf(" i=%d\n", il; printf(" Exiting
Block 2 \n") i } II end block

printf ("i=%d\n", i); printf("Exiting Block l\n");
return;)

VOLUME 4, NUMBER 2 37

DJComputers.cz

A Better Way to C
If this function was called it would produce the following as

output:

Entering Block 1 Entering Block 2
1=0 Exiting Block 3 1=77
2 1=100 Exi ting Block 1

Entering Block 3
Exi ting Block

Note that changing the value ofi in a block does not effect the value
of i in any other block. Just like changing a variable local to a function
does not change the value of a global variable with the same name. In
the above code also notice that the third i is initialized in the for
statement itself.

If you declare variables in blocks as described above, be careful
when modifying code. Removing a declaration of a variable within a
block, but forgetting to remove a reference to that variable may not
necessarily generate a compiler error if the variable name is also defined
in an outer block. Strange errors can result.

A potential problem which could occur in C programs compiled
with a C++ compiler results from C++'s automatic creation of a type for
a tagged struct. In C++ it is possible for a structure defined in an inner
scope to conceal a variable of the same name as the structure in an outer
scope. Consider the following (which is based on the example on page
401 of the ARM)

#include <stdio.h>
int x[99];
int maine int argc, char'" argv[]) struct x{int a;};

printf("the size is %d\n", sizeof(x»; }

If the above is compiled by a C++ compiler the resulting program
will print out "the size is 4". If it were compiled with an ANSI C
compiler it will output "the size is 396". In the ANSI C case the sizeof
refers to the array; if you wanted to reference the struct the sizeof would
have to be changed to sizeof(struct x). In C++, however, because a new
type, x, is created when the struct is defined it hides the array. If the
sizeof was meant to reference the array then it could be rewritten as
sizeof(::x). What may you ask does the :: do?

In K&R and ANSI C, if a function had a local variable with the same
name as a global variable the function would not be able to access the
global variable directly. Put another way, you usually do not give your
local variables the same names as global variables if you need to access
the global variables. Well C++ has a remedy for that. A new operator
was introduced in C++, ::, which is called the scope resolution operator.
This allows a function to access variables of file scope (global) even if
that function has a local variable of the same name. For example:

extern int (void); extern int do_two (void);
int error = 0; 1/ declare global variable
void do_stuff (void) { int error = Oi J /

declare local variable
if((error = do_one () == 0) error =

if (error != 0) : : error = error +
ERR_DO_STUFF _OFFSET;)

The above function will, if it gets an non-zero return value from
either of the two functions it calls, set the global variable error to the
returned error value plus an offset value. As a matter of style some C++
programmers always use the scope resolution operator when referenc­
ing a global variable. This aids people reading the code in telling them
that a global variable is being accessed.

As stated above, the scope resolution operator can only be used to
access file scope variables; that is, global variables. In the nested blocks
example discussed earlier you could not use this operator from an inner

38 AC's TECH

block to access the variable i in an outer block.
The final C++ feature that we will look at in this article is anony­

mous unions. In C++, unlike K&R and ANSI C, each union does not
have to have a name. The fields of such an unnamed or anonymous
union must be unique from the names of variables or the names of the
fields in other anonymous unions within its scope. An example of a
definition of an anonymous union:

union {
char packBytes [sizeof (int)] ;) ;

int packlnteger;

packInteger and packBytes can be referenced just like ordinary
nonmember variables eg:

packBytes = 0;

In K&R and ANSI C you would have have had to use:

union { int integer; char
bytes[sizeof[(int)]; } pack;

and accessed the union members via Pack eg:

Pack. integer = o.

If you define a global anonymous union it must be declared as
static; that is, a global anonymous union cannot be accessed outside of
its compilation units. Failure to declare a global anonymous union as
static will result in a compile time error. g++ does complain if a global
anonymous union is not declared static, however it crashed my ma­
chine while compiling a trivial example containing a global static
anonymous union!

Due to the addition of new features to C++ over ANSI and K&R C
a number of new reserved keywords were introduced. These keywords
cannot be used as variable names, type names etc. Here is a list of the
new keywords:

asm catch class delete friend inline new operator
private protected public template this throw try virtual

These may cause problems when including C header files into
your C++ program as it is possible that these keywords could have been
used as C argument names, type names or function names. If you do
come across such instances then they will have to be changed.

The stronger type checking present in C++ is at times a two edged
sword. On the one hand it brings your attention to possible and real
errors (and the potential for error). While on the other hand it can
sometimes seem to be a nuisance, having the compiler always com­
plaining about assignments etc which seem perfectly valid. I personally
prefer a stronger type checked language. Anything that can help me
eliminate errors early is well worth the inconvenience of some extra
typing. As well as stronger type checking, C++ is also stricter about the
use of user defined and built in types than C. This has resulted in a
couple of differences in implementation worth watching out for:

) Character constants have asizeofcharin C ++ (sizeof(' a') will equal 1)
d a size of intin C (sizeof(' a') will equal sizeof(int)). Note in general there wi
lbenocompatibilityproblemswithC andC++ treatment of char, exceptfor th
above case. 2) Enumerations are treated differently in

DJC
om
pu
ter
s.c
z

A Better Way to C
and C++. In our example ofenum days; inC sizeof(Monday) is equal to
sizeof(int), inC++ it is equal tosizeof(days) which mayor may not equal
sizeof(int).

That sums up all the C++ features that I wish to cover in this article.
I hope you agree that they supply some useful and well needed
extensions to C. Now there is a lot more to C++ than I have covered in
this article. I have only discussed the features which could be thought
of as simple enhancements to C. In Wiener and Pinson's book they refer
to these features as "How C++ Enhances C in Small Ways". Well there
are any number of larger ways in which C++ enhances C but they arc

left for you to discover or for possible future articles.
I have included a bibliography which consists of the various books

I referenced during the writing of this article, which cover C and C++.
If you are interested in adding a couple of books on C++ to your library
I highly recommend the ARM and Coplien's book "Advanced C++".
Also, while this article did not cover Object Oriented Programming
anybody who seriously wants to use C++ will require knowledge of
OOP concepts. To this end I have included a reference to Timothy
Budd's excellent book" An Introduction to Object-Oriented Program­
ming".

ANNOTATED BIBLIOGRAPHY

K&RC
"The C Programming Language" by Brian W. Kernighan and Dennis
M. Ritchie, first edition 1978, Prentice-Hall. ISBN 0-13-110163-3 The
classic book on C programming. Deserves to be one of the best selling
computer books around. Divided into two sections; a tutorial section
and a language reference section.

ANSIC
"The C Programming Language" by Brian W. Kernighan and Dennis M.
Ritchie, second edition, 1988, Prentice-Hall. ISBN 0-13-110362-8 This is
a rewrite of their original book to cover the new ANSI version of C.

"The Waite Group's Essential GuidetoANSIC"by Nabajyoti Barkakati,
1988, Howard WSams & Company. ISBN 0-672-22673-1 A great little
book! This is a quick reference guide to ANSI C and the standard
library. Well organized and written.

"Standard C", by P.H. Plauger and Jim Brodie, 1989, Microsoft Press.
ISBN 1-55615-158-6 Another quick reference guide. I don't like this as
much as the "Essential Guide", mainly for style reasons. However, it
does have detailed descriptions of each of the header files in the
standard library and a useful table indicating what header file to
include to pick up definitions of specific types and functions.

c++
"The Annotated C++ Reference Manual" by Margaret A. Ellis and
Bjarne Stroustrup, May 1992, Addison-Wesley. ISBN 0-201-51459-1. I
have to emphasize that this book is a reference manual, not a tutorial.
However, as reference books go this one ranks among the best. The
supplied" commentary" is a good read in itself and explains why certain
features are implemented the way they are and, more usefully, what
pitfalls to watch outfor. This is notthe sort of book you are likely to read
from start to finish but if you intend to do a lot of C++ programming it

will prove invaluable. This book is the ANSI base document for the
ANSI standardization of the C++ language. In various C++ literature
this book is referred to as the ARM.

"Advanced C++; Programming Styles and Idioms" by James Coplien,
1992, Add ison-Wesley. ISBN 0-201-54855-0 Once you have the basics of
C++ under your belt this is the book to get. People with little formal
backgrounds in computer programming may find the discussion in
some parts a bit of a tough slog, but this is a book where the more effort
expended the greater the rewards. It incl udes an appendix on interfac­
ing C and C++ code which to some extent inspired this article. For
people interested in moving to object oriented programming the
chapters on Object-Oriented Programming and Object-Oriented De­
sign are well worth reading. Anybody really serious about program­
ming in C++ should own this book.

"An Introduction to Object-Oriented Programming and C++" by
Richard Wiener and Lewis Pinson, 1988, Addison-Wesley. ISBN 0-201-
15413-7 This book suffers, in my opinion, from a poor layout and choice
of typefaces. It also is based on an older version of C++. However, it is
written in fairly plain language and, lots of examples and diagrams are
used to explain some concepts. Also, unlike some other C++ books, this
book does explain some of the terminology and goals of Object­
Oriented programming before starting into the language itself.

"C++, A Guide For C Programmers" bv Sharam Hekmatpour, 1990,
Prentice Hall. ISBN 0-13-109471 This book has many examples, the last
four chapters are in fact case studies. The solutions to exercises are
included. The examples were written with g++. It assumes, as the title
suggests, that you have knowledge of C. One thing I didn't like was that
it just dived right into the C++ language; no attempt was made to try to
explain the goals of object oriented programming and no real outline of
C++ and its features was given. Again, this book is based on an older
version of the C++ language (and the examples are based on an older
g++ compiler) and some of the newer features (such as Templates) are
not mentioned. However, there is a new version of the book which
comes with disk (PC) containing the source to all the examples. I do not
know if this version is based on a newn C++ language definition.

OOP
"An Introduction To Object-Oriented Programming" by Timothy Budd,
1991, Addison-Wesley. ISBN 0-201-54709-0 An excellent book on OOP.
Starts off with general concepts and then goes on to show how these
concepts are supported in four languages; C++, Objective-C, Object
Pascal and Small talk. Describes the advantages and disadvantages of
each language. Good clear examples and case studies. Unfortunatel­
ythe book was written before templates were introduced to C++, so only­
a cursory mention ofthem is made. Well worth getting if you wantto und
rstand what OOP is all about.

Please write to:
Paul Gittings

c/o AO's TEOH
P.O. Box 2140

Fall River, MA 02722

VOLUME 4, NUMBER 2 39

DJComputers.cz

AC'S GUIDE
WINTER

1994
Looking for a specific product for your Amiga but
you don't know who makes it? Want a complete

listing of all the Fred Fish software available? Just
looking for a handy reference guide that's packed
with all the best Amiga software and hardware on

the market today?

If so, you need AC's GUIDE for the Commodore
Amiga. Each GUIDE is filled with the latest up-to­

date- information on products and services available
for the Amiga. It lists public domain software, user's

groups, vendors, and dealers. You won't find
anything like it on the planet; and you can get it only
from the people who bring you the best monthly
resource for the Amiga, Amazing Computing.

So to get all this wonderful information, call
1-800-345-3360 today and talk to a friendly Customer
Service Representitive about getting your GUIDE. Or
stop by your local dealer and demand your copy of
the latest AC's GUIDE for the Commodore Amiga.

40 AC's TECH

List of Advertisers
Company

Amigo Library Services
AMOS
Delphi Noetic Systems
Digitollmogery
SAS

Page Number

CII
CIV
8

44
17

AC's TECH 4.2 Disk Includes
Source & Executables For:

• True F-BASIC
• Huge Part '2
• Better Way to C . .
• AmigaDOS ShaNd Libraries .
• Compression ," of'

• A Date with True
• Programmirrgthe.Amiga in Assembly

. ' .

A ND MORE!

DJC
om
pu
ter
s.c
z

AC's TECH Disk
Volume 4, Number 2
A few Ilotes before you dive illto the disk!

• You need a working knowledge of the AmigaDOS CLI as most of the files on the
AC's TECH disk are only accessible from the CLI.

• In order to fit as much information as possible on the AC's TECH Disk, we archived
many of the files, using the freely redistributable archive utility 'lharc' which is
provided in the C: directory.lharc archive files have the filename extension .lzh.

To unarchive a file foo.lzh, type lharc x faa
For help with lhare, type lharc ?
Also, flies with 'lock' icons can be unarchivedfrom the WorkBench by double-clicking the icon, and supplying a path.

AC's TECH DISK
GOES HERE!

Please notify your
retailer if the

AC's TECH Disk

We pride ourselves In the quality of our print
and magnetic media publications. However, In
the highly unlikely event of a faulty or dam­
aged disk, please retum the disk to PlM
Publications, Inc. for a tree replacement .
Please retum the disk to:

AC'sTECH
Disk Replacement
P.O. Box 2140
Fall River, MA 02720-2140

Be Sure to
Make a
Backup!

CAUTION!
Due to the technical and experimental nature of some of
the programs on the AC's TECH Disk, we advise the
reader to use caution, especially when using experimental
programs that initiate low-level disk access. The entire
liability ofthe quality and performance of the software on
the AC's TECH Disk is assumed by the purchaser. PiM
Publications, Inc, their distributors, or their retailers, will
not be liable for any direct, indirect, or consequential
damages resulting from the use ormisuse'ofthe software
on the AC's TECH Disk. (This agreement may not apply
in all geographical areas.)

Although many of the individual files and directories on
the AC's TECH Disk are freely redistributable. the AC's
TECH Disk itself and the collection of individual files and
directories on the AC's TECH Disk are copyright PiM
Publications. Inc. and may not be duplicated in any way.
The purchaser, however . is encouraged to make an archive!
backup copy of the AC's TECH Disk.

Also, be extremely careful when working with hardware
projects. Check your work twice , to avoid any damage that
can happen. Also. be aware that using these projects may
void the warranties of your computer equipment. PiM
Publications, or any of its agents, is not responsible for any
damages incurred while attempting this project.

41

DJC
om
pu
ter
s.c
z

NUMBER s
By MICHAEL GREmLING

Introduction
Last article I covered the basic arithmetic operations of addition,

subtraction, multiplication, and division and described a practical ap­
plication of ExNumbers in a CLI-based calculator.

This article extends the ExNumber library functions by introduc­
ing an Exlnteger module which performs logical, bit, and shift opera­
tions (e.g., AND, BSET, SHR, etc.) on ExNumbers and can also convert
an ExNumber to/from various based representations (e.g., hexadeci­
mal, binary, octal strings). I also add an ExMathLibO module which
provides an ExNumber interface to the Amiga's built-in IEEE 64-bit
math library. Finally, all these new functions are integrated into the CLI­
based calculator from last time to vastly improve ill functionality.----

Exlntegers
The most obvious extension for the ExNumber& way of per­

forming logical operations on them. Doing so we restrict
the vast dynamic range (i.e., -9.9EIOOOO to 9.9E10000) oftbe ExNumbers
into a more manageable range that can be exactly represented within the
52 digits or so of ExNumbers. As well, to give easily discemable
ExInteger limits when performing based arithmetic, a further constraint
is imposed so that Exlntegers are within the range to 2**172 or
-5.98E51 to 5.98E51. ExIntegers can thus exactly represent any I72-bit
integer.

The simplest implementation of ExIntegers to support logical
operations in Modula-2 is a mathematical set implementation. (Table 1
shows the relationship between set operations and logical operations.)
ExIntegers are built up using an array of the 16-bit set data type
(BITSET). Figure 1 illustrates the structure of the Exlnteger data type.

p A R
42 AC's TECH

Exlnteger Conversions
To give us logical operations on ExNumbers several conversion

routines are defined which translate ExNumbers into ExIntegers and
vice versa. These conversions are hidden from the user of the Exlnteger
functions (Listing 1) so that the parameters which are passed in and out
of the procedures are always seen as ExNumbers. Thus, the ExInteger
package interface is simplified so users don't have to perform explicit
conversions every time they wish to perform a logical operation on
ExNumbers. We see later that this calling convention simplifies the
interface to the Calculator as welL

The ExNumbToExlnt procedure near the end of Listing 1, converts
ExNumbers to ExIntegers. This algorithm first constrains the ExNumber
to the valid ExInteger range (i.e., -(2**172) to 2**172). Next, a loop
generates ExInteger set elements by taking the modulo 2**16 remainder
of the ExNumber to effectively strip out a 16-bit churll< of the ExN umber
and then type-casts this number into a 16-bit set (LONGBITSET), stored
in the ExInteger. After each loop iteration, the ExNuIl/ber is divided by
2**16 and truncated to an integer to give access to the I6-bit chunk.
This loop terminates when all the ExNumber Quads are zero.

The inverse operation of converting ExIntegers tt' ExNumbers is
performed by the ExIntToExNumb procedure. A sin ilar loop scans
through the ExInteger chunks, in reverse order (i.e., . rom highest to
lowest), converts each set into a 16-bit unsigned number, multiplies an
accumulated total by 2**16, and adds the converted number to the totaL
The conversion is complete as soon as each ExInteger set has been
addressed.

T I I

DJComputers.cz

Logical Operations
The ExInteger module performs the standard logical operations of

AND, OR, XOR, NOT or one's complement , bit setting , bit clearing, bit
toggling, logical shifts, arithmetic shifts, and rotations. These functions
are grouped according to the algorithm which implements each opera­
tion. For example, the AND, OR, XOR, and NOT functions all call the
LOp procedure to perform thedetaiIed logical processing of the ExInteger.
For this reason, I just describe the central procedure for each grouping
(Le., LOp in this case) with the understanding that the other procedures
which also use this algorithm have similar properties.

The ExAnd procedure serves as the representative of the first
grouping which calls the LOp procedure, by passing in a customization
function (the And function) which returns the intersection (equivalent
to logical AND) of two BITSET arguments. The LOp procedure first
translates the two operands to ExIntegers; then the passed function is
used, on a 16-bit chunk basis, to logically AND (in this case) together
both ExInteger arguments. The result is converted back to an ExNumber
and is returned to the ExAnd procedure .

The second class of operations uses the LBit procedure to perform
single-bit manipulations such as setting, clearing, and toggling bits. The
ExSetBit procedure is used as an example to illustrate the general bit
algorithm. As before, the ExNumber is converted to an ExInteger. LBit
then makes use of the power procedure 'xtoi' from the ExMathLibO
module (described below) which implements the raising of the
ExNumber , x, to the ith integral power, where i is an integer. The xtoi
routine is used here to produce a single-bit mask based on the principle
that 2**n sets the nth bit of an integer. In this case, the bit mask is ORed
with the ExInteger, using the passed 'Oper' function in a call to LOp.
Consequently, the ExNumber returned by this procedure, after conver­
sion from an ExInteger, has its nth bit set.

Shifting operations are more awkward in an ExInteger format so
they are implemented as multiplications and divisions by powers of two
on ExNumbers. There are three different flavours of shifting algorithms:
signed or arithmetic shifts, unsigned or logical shifts, and rotations.
Figure 2 shows how these shifting operations differ.

The simplest shifting operation is the logical shift as implemented
by the LShift algorithm (Listing 1). The ExNumber is first constrained
to a valid ExInteger range. Next, if the bit shift quantity is greater than
MaxBase2Bits (172), a zero is returned and the algorithm is aborted since
the number has been shifted out of the ExInteger number range; other­
wise, a shift mask is calculated using xtoi, and, for the ExShl procedure,
is multiplied times the number to be shifted. This shifting operation is
characterized by the equation Result = n * 2**b, where n represents the
number to be shifted and b represents the number of bit positions to be
shifted .

The rotation operations, implemented by the LRotate procedure ,
are slightly more complicated because the bit which is rotated out of the
ExInteger range must be wrapped around and shifted back into the
ExNumber. To help sense the state of a given bit in an ExNumber , the
IsBitSet function was created. It forms a mask for a selected bit, ANDs
this mask with a number, and then returns true if the bit was set. For
ExROR, LRotate calls this function to extract the least significant bit
before shifting the number. After the shift, if the detected bit was set, the
most significant bit of the result is set using the ExSetBit procedure. The
above process is repeated until as many bits have been rotated as were
specified by the 'bits' parameter. Note: The worst case shift has been
reduced, using a modulo operation, to the number of bits in an ExInteger
since rotations always preserve the original number.

The final shifting procedure, ExAshr, performs an arithmetic shift
right of an ExInteger. What this means is thatthesign bit of the ExInteger
is replicated each time the ExInteg er is shifted right so that the number's
sign is preserved. Since ExNumbers are implemented with a separate
sign bit, this value is easily extracted by setting a SavedBit flag if the sign
is negative. The ExInteger is then shifted right one bit at a time (using
ExDiv by two) until 'numbits' have been shifted . For each shift, if the
SavedBit flag was set, the upper bit of the ExInteger is set using ExSetBit
to restore the number's sign.

Based String Conversions
To enable the calculator to deal with numbers in other bases (e.g.,

hexadecimal, binary, and octal) I need to introduce two new procedures
called StrToExlnt and ExIntToStr. The first of these routines converts a
based string into an ExNumber and the second routine performs the
inverse operation of converting an ExNumber into a based string. Both
procedures work only with integers: StrToExInt returns an illegal
number error if requested to convert a floating point string and ExIntToStr
constrains the ExNumber to a legal integer range before performing a
conversion. I won't go into the details of these algorithms since they are
very similar to the earlier string conversion routines you saw in the
ExNumbers module. The chief difference is that the divisor becomes a
power of the conversion base instead of a power of ten. Listing 1 has the
complete source code for StrToExInt and ExlntToStr if you are inter­
ested in the algorithm s used for these conversions.

An ExNumber Math Library
Everyone knows that a calculator has transcendental (e.g., sin, cos,

tan), logarithmic (e.g., log, In), and power (e.g., x"y) functions. But
these operations are usually very costly in terms of performance and

EquiValent
logica. Operations

A orB-
A and notH

AandB

Table 1: Set Operations vs Logical Operations

16-Blt SefEler:nents (Chunks)
0100 1001' 1001 0110
()(XX) 00 to 11 OJ 00 1 0
()(XX) OCOO 0000 0000

•
•
•

0000 0000 ()(XX) 0000

Figure 1 : Exlnterger representation of the
number '1234567890'.

VOLUME 4, NUMBER 2 43

DJC
om
pu
ter
s.c
z

Huge NUUIbers Part II
have algorithms can become very complicated-----€specially since
our calculator has up to 52 digits of precision. In fact, during my
literature search, the best algorithms I could find had only from 16 to 24
digits of accuracy. There were a number of alternatives: 1) come up with
the algorithms from scratch which would give 52 digits of accuracy; 2)
use a lower-accuracy algorithm; 3) use existing lower-accuracy func­
tions from the Amiga's IEEE math libraries. I opted for the third choice
since I didn't have the time to invest in producing and testing the
required precision algorithms and the speed penalty could be horren­
dous. As well, there was no point in reinventing the wheel when
algorithms of comparable precision already existed on the Amiga.

I essentially created an interface (ExMathLibO module in Listing 2)
to the double-precision IEEE floating point library. The calculator could
thus have 15 digits of precision at hardware speeds (if you have a
floating point coprocessor). Several functions such as square root, cube
root, integral powers/roots, and factorial do have the full ExNumber
precision because the algorithms were easily extended to give 52-digit
accuracy. If you have the ability and time to extend the precision of any
other functions, I would appreciate hearing from you so that I can
update this module with the new algorithms. Any algorithms I receive
will be placed in the public domain-with the author's permission.

The heart of the IEEE floating point interface lies in the the
ExNumToLongReal and LongRealToExNum conversion routines. To
simplify the conversion process and demonstrate the power of reuse, I
used several compiler-supplied conversion routines,
ConvStrToLongReal which translates a string into a double-precision
IEEE floating point number; and ConvLongRealToStr which performs

the inverse operation. As well, ExNumToStr and StrToExNum, from
the ExNumber module, provide string to ExNumber translations.

An IEEE number is converted to an ExNumber through an inter­
mediate step of translating the number into a string. StrToExNum takes
this string and produces a valid ExNumber. To reverse this process and
produce an IEEE representation from an ExNumber, ExNumToStr uses
an ExNumber to produce a string which ConvStrToLongReal then
translates into the double-precision IEEE floating point number. The
expX procedure shown below demonstrates the conversion process and
the IEEE interface. The expD function is a compiler-supplied library
function which ties directly into the Amiga's double-precision IEEE
library.

PROCEDURE expX(VAR Result: ExNwnType; x : ExNumType); BEGIN

LongRealToExNum (expD (ExNumToLongReal (x»); END expX;

While many routines can be obtained using the IEEE library, some,
like the inverse hyperbolic trigonometric operations, are not available in
this library. I had to develop these algorithms from their basic defini­
tions which follow:

ArcSinh(x) = Ln(x + Sqrt(x*x + 1» ArcCosh{x) = Ln(x +
Sqrt(x'x - 1» ArcTanh(x) = Ln«l + x) I (1 - x» 12

where Ln represents the natural logarithm of a number and Sqrt
represents the square root of a number.

Several other functions such as integral roots and powers have
algorithms which were easily extended to give full 52-digit precision.

5 __
. ..

-
f@l" C@@llde@s, C@II Us Anytime @t 7. @r fAX us @It 7.

44 AC's TECH

DJComputers.cz

Huge Numbers Part II
The integral root algorithms are based on Newton's iterative method of
finding roots of a function whose basis equation is y(n+ 1) = y(n) - f(y)/
f'(y) where y(n+ 1) is the (n+ l)st iterative solution, y(n) is the nth
solution, f(y) is the function whose root is required, and f'(y) is the
derivative of f(y). I applied this equation to obtain the general root­
finding algorithm shown below:

y(n+1) = (y(n) • (r - 1) + x / y(n)--(r - 1» / r

where y(n+ 1) and y(n) are defined as before, r represents the root
power (e.g., r = 2 for a square root), and x is the number whose root we
wish to determine. The Root procedure (top of Listing 2) implements
this general algorithm and also adds the capability of finding negative
roots (e.g., the cube root of -8 is -2). Both the sqrtX and rootX exported
procedures use this general-purpose Root routine.

Integral powers are calculated using an algorithm published by
Donald Knuth in his work, "The Art Of Computer Programming", the
second volume. I have adapted his algorithm to also work for negative
powers. The resultant implementation is shown in the xtoi procedure
in Listing 2. The beauty of Knuth's approach is that the calculation of
any integral power involves only about log(n)/log(2) multiplications
where n represents the number's integral power. For example, this
algorithm calculates 15**64 using only six multiplications! The expX
and powerX procedures use the xtoi routine whenever they evaluate
integral powers.

The last routine for which I have an extended precision algorithm
is the factorialX procedure which computes the factorial of a number.
Because Ex Numbers have a much larger dynamic range (-lx1O**10000
to lxlO'*100(0) than most other floating point numbers, factorials can be
calculated of numbers as large as 3249! Compare this with the typical
calculator which only gives factorials as large as 69! However, calculat­
ing this large a factorial also normally requires 3248 multiplications
which could take quite a while even on the fastest Amiga. To reduce this
time, precalculated factorials of SOO!, WOO!, 2000!, and 3000! have been
stored in the ExMathLibO module. Thus, to calculate 3249!, only 249
multiplications are required since the algorithm starts with 30001. Call­
ing a routine 1000 times recursively can take a lot of stack space so the
factorial procedure calculates factorials using an iterative algorithm
rather than the recursive algorithm everyone is taught in school to keep
the calculator's stack requirements to the CLI default.

CLI Calculator Revisited
Listing 3 shows the source code for the new CLI calculator which

uses all the new functions discussed above and introduces a few new
features such as access to 16 ExNumber storage locations, persistent
state between invocations, an argument-passing interface, and a choice
of numerical display formats. I'll take you on a brief excursion of the
features which make up this new calculator.

Remembering
The first addition is that the calculator now can store and recall up

to 16 ExNumbers using the syntax: x STM n where x represents a number
or expression to be stored and n is the location (0 to 15) where the result
should be stored by the StoreMemory routine. To recall the number type
Mn where n represents the ExNumber location to recall via the
RecallMemory routine. The ExNumbers are stored in a simple array
which can be easily extended to allow number storage which is only
limited by available memory.

All these storage locations and other calculator state variables are
stored to the RAM: drive (via the StoreState procedure) between calcu­
lator invocations so results from previous calculations can be reused
during later sessions. The persistent memory also helps get around the
problem of having expressions which are longer than the maximum
allowable input string of2S0 characters. They can simply be split up and
calculated in pieces, with intermediate results stored in the calculator's
memory.

Argument Interface
In addition to the interactive mode, it is possible to use the

calculator much like the Amiga's Eval program where the expression to
be evaluated is passed to the calculator when it is invoked. For example,
typing 'Calculator 2/\10' produces the result 1024. The command line
argument is extracted by the GetCLI procedure and then is processed
just as if you had typed the expression interactively. Because the
memory is retained between calculator invocations, you could store the
results of one calculation in memory and then use those results in a
following calculation. Remember that command line arguments are
automatically separated by the operating system if spaces are left
between words so quotation marks must be placed around expressions.
For example, to calculate the sum of the first five factorials, from theCLI,
type:

Calculator "11 + 2! + 3! + 4! + 5!"

The answer '153.' is displayed when the CLI prompt returns. Of
course, the spaces are optional, and 1!+2!+3!+4!+5! (with no spaces)
would produce the same result without requiring quotations.

Output Formats
You can toggle the format of the calculator's output numbers

between the default floating point notation and scientific notation. Just
type SCI to toggle between these two modes. Be careful to type the exact
name as shown because all the calculator functions are case-sensitive. If
you type in a number like 2 and then switch to scientific notation you
may be shocked at all the trailing zeros that get displayed. Several
commands let you suppress these extra digits: DP n lets you enter the
number of decimal point digits which should be displayed where n can
be a number between 0 and 52. Specifying a value of 0 selects the default
floating decimal point notation while any other number fixes the
decimal point at n digits. DIG n selects the number of digits that the
calculator uses when performing its calculations. Valid values for n are
from 0 to the default of 52. All calculator format definitions are saved to
the RAM: disk between calculator sessions.

Other Functions
The calculator allows evaluation of any trigonometric function

(SIN, COS, TAN). The default angular units are in degrees. The
command DRG toggles between angular units in degrees, radians, and
grads.

Based numbers, as discussed above, represent a subset of the
ExNumbers. To get the calculator into the based number mode, type
BAS n where n represents the numerical base from 2 to 16. The value for
n is always specified in decimal notation no matter which base the
calculator is using. Numbers containing decimals and exponents are
illegal when in a numeric base other than 10. Based numerical systems
greater than lOuse the uppercase alphabetic characters A -F to represent
numbers in addition to the standard digits but every number must

45

DJC
om
pu
ter
s.c
z

Huge Numbers Part II
always begin with a valid base digit from 0 t09; numbers beginning with
the digits A-F require a leading O. Underscores, apostrophes, and
commas may be used to separate groups of digits no matter which based
representation is being used.

Table 2 summarizes the calculator operations and commands
along with the required syntax when accessing the calculator from the
CLI. An additional restriction is that the longest allowable expression
string cannot exceed 250 characters.

Summary
The addition of ExInteger shifting and bit manipulation operations

along with an IEEE double-precision mathematical library interface has
transformed the original CLI calculator into a full-featured tool which is
as powerful as commercial calculators, lacking only a polished graphi­
cal interface. In the final article of this series, I introduce a CanDo

application program which provides a slick, graphical interface to this
CLI-based calculator. Happy computing until then!

Listing One

IMPLEMENTATION MODULE ExIntegers;

(* Some Functions to perform bit manipulation on
ExNumbers.

This module deals with integral ExNumbers in the
range

from -5. 9863E51 to 5. 9863E51. Any numbers outside
this

range are represented with the maximum (or minimum)
ExNumber from this range.

*)

FROM Conversi ons IMPORT ConvNumToStr, ConvStrToNum;
FROM ExMathLibO IMPORT xtoi;
FROM ExNumbcrs IMPORT ExNumType, ExChgSign, Exl1in,
ExMax,

SignType,

IsZero,

ExStatusType,

FROM InOut
WriteLongInt,

FROl1 Strings

CONST

GetMaxDigits, ExO, ExNumb,

ExSub, Exl, ExMult, r:xDiv,

ExT rune , ExAbs, ExStatus,

GetExpMant, ExDivlO, ExToLongInt,
ExFrac, ExAdd, ExNumToStr,
ExToLongCard, WriteExNum;

IMPORT WriteString, WriteLn,

I/lri teCard;

Il1PORT InsertSubStr, LengthStr;

l1axBase2Bits = 172; (* In(9.99E51) / In(2) *)

LogicalSize = MaxBase2Bits DIV 16;
Left FALSE;
Right = TRUE;

46 AC's TECH

TYPE
LogicalType = ARRAY [0 .. LogicalSizej OF BITSET;
LogicalProc = PROCEDURE (BITSET, BITSET) : BITSET;
ExNumbProc = PROCEDURE (VAR ExNumType, ExNumType,

ExNumType) ;

VAR
LogZero : LogicalType; (* All bits cleared or ° *)

(* 2 ** MaxBase2Bits 1 *)

(* -2 ** l1axBase2Bits + 1 *)

(* The value "2" *)

MaxNumber : ExNumType;
MinNumber : ExNumType;
Two ExNumType;
Cnt : CARDINAL;

(*,----------*)

(* Local bit manipulations functions. *)

PROCEDURE And (opl, op2 : BITSET) : BITSET;
BEGIN

RETURN opl * op2;
END And;

PROCEDURE AndNot (opl, op2 BITSET) BITSET;
BEGIN

RETURN op1 - op2;
END AndNot;

PROCEDURE Or (opl, op2 BITSET) BITSET;
BEGIN

RETURN op1 + op2;
END Or;

PROCEDURE Xor (opr, op2 BITSET) BITSET;
BEGIN

RETURN opl / op2;
END Xor;

(*----------*)
(* l1iscellaneous local procedures *)

PROCEDURE Max (x, Y : INTEGER) : INTEGER;
BEGIN

IF x > y THEN
RETURN x;

ELSE
RETURN y;

END;
END Max;

PROCEDURE ConstrainExNum (VAR Number: ExNumType) ;
(* Limi t Number to be wi thin MinNumber to MaxNumber and

eliminate any fractional portions. *)

BEGIN
ExMin (Number, MaxNumber, Number) ;
ExMax (Number, MinNumber, Number) ;
ExT rune (Number) ;

END ConstrainExNum;

PROCEDURE ExNumToLogical (Numb : ExNumType;

VAR
DivScale
Scale
Temp
Temp2

ExNumType;
ExNumType;
ExNumType;
ExNumType;

VAR Logical: LogicalType);

DJComputers.cz

Huge Numbers Part II
LogCnt : INTEGER;

BEGIN
(* Constrain op1, op2 to be within the logical number

set *)

ConstrainExNum(Numb) ;

(* translation scaling factor *)
ExNumb(65536, 0, 0, Scale);
ExDiv(DivScale, ExL Scale);

(* perform conversion *)

LogCnt : = 0;
Logical: LogZero;
WHILE NOT IsZero (Numb) DO

ExMult(Temp2, Numb, DivScale);
ExTrunc(Temp2);
ExMult (Temp, Temp2, Scale);
ExSub(Temp, Numb, Temp);
IF LogCnt > LogicalSize THEN RETURN END;

Logical [LogCnt] : = BITSET (ExToLongInt (Temp)) ;
Numb : = Temp2;
INC (LogCnt) ;

END;
END ExNumToLogical;

PROCEDURE Logical ToExNum (Logical : Logical Type;
VAR Numb : ExNumType);

VAR
Scale
Temp
LogCnt

BEGIN

ExNumType;
ExNumType;
INTEGER;

(* translation scaling factor *)

ExNumb(65536, 0, 0, Scale);

(* perform conversion *)
Numb := ExO;
FOR LogCnt := LogicalSize TO ° BY -1 DO

ExMult(Numb, Numb, Scale);
ExNu:nb(LONGINT(Logical[LogCnt]), 0, 0, Temp);
ExAdd(Numb, Numb, Temp);

END;
END LogicalToExNum;

(*----------*)

(* Local procedure to perform general *)
(* logical operations on ExNumbers. *)

PROCEDURE LOp (VAR Resul t : ExNumType;
op1 ExNumType;

VAR

Oper
op2

i : CARDINAL;
Lopl, Lop2 : Logical Type;

BEGIN

LogicalProc;
ExNumType) ;

(* Translate to logicals *)

ExNumToLogical(opl, Lopl);
ExNumToLogical(op2, Lop2);

(* Operate on Lopl and Lop2 one quad at a time *)
FOR i : = ° TO LogicalSize DO

Lop2 [i] : = Oper (Lopl [i], Lop2 [i]) ;
END;

(* Translate back the result *)
LogicalToExNum(Lop2, Result);

END LOp;

(*----------*)
(* Local procedure to perform general *)
(* single bit operations on ExNumbers. *)

PROCEDURE LBit (VAR Result: ExNumType;

VAR

number
Oper
bitnum

Temp ExNumType;
BEGIN

ExNumType;
LogicalProc;
CARDINAL) ;

(* Constrain number to be within the logical number set
*)

ConstrainExNum(number);

(* constrain bitnum from ° to MaxBase2Bits *)
IF bitnum > MaxBase2Bits THEN

(* no bits are changed *)
Result := number;
RETURN;

END;

(* calculate 2 * *bi tnum *)
xtoi (Temp, Two, LONGINT(bitnum));

(* set the bitnum bit position *)
LOp (Result, number, Oper, Temp) ;

END LBit;

(*-----------------*)
(* Local funct ion to extract a bi t from *)
(* an ExNumber. *)

PROCEDURE BitSet (number: ExNumType;
bitnum : CARDINAL) : BOOLEAN;

VAR
Temp ExNumType;

BEGIN
(* Constrain number to be within the logical number set

*)
ConstrainExNum(number);

(* constrain bitnum from 0 to MaxBase2Bits - 1 *)

IF bitnum >= MaxBase2Bits THEN
(* assume FALSE *)

RETURN FALSE;
END;

(* calculate 2**bitnum *)
xtoi (Temp, Two, LONGINT (bitnum)) ;

(* extract thebitnumbit *)
ExAnd(number, number, Temp);

(* translate to boolean *)
RETURN NOT IsZero (number) ;

END BitSet;

(*-----------*)
(* Local procedure to perform general *)
(* bit shifting operations on ExNumbers. *)

PROCEDURE LShift (VAR Result: ExNumType;

VOLUME 4. NUMBER 2 47

DJC
om
pu
ter
s.c
z

Huge Numbers Part II

VAR

number
ExOper
bits

Temp ExNumType;
BEGIN

ExNumType;
ExNumbProc;
CARDINAL) ;

(* restore the saved bit *)
IF SavedBit THEN

ExSetBit(number, number, 0);
END;

END;

(* Constrain number to be within the logical number set END;
*)
ConstrainExNum(number);

(* constrain bitnum from 0 to MaxBase2Bits *)
IF bits> MaxBase2Bits THEN

(* shifted out of range *)
Resul t : = ExO;
RETURN;

END;

(* calculate 2**bits *)
xtoi(Temp, Two, LONGINT(bits));

(* shi ft the number *)

ExOper (Resul t, number, Temp) ;

(* Constrain number to be wi thin the logical number set
*)

ConstrainExNum(Result);
END LShift;

(*----------*)

(* Local procedure to perform general *)

(* bit rotation operations on ExNumbers. *)

PROCEDURE LRotate (VAR Result: ExNumType;

VAR

number
Shiftright
bits

ExNumType;
BOOLEAN;
CARDINAL) ;

ShiftCnt CARDINAL;
SavedBit BOOLEAN;
Half ExNumType;

BEGIN
(* Constrain number to be within the logical number set

*)
ConstrainExNum(number) ;

(* constrain bitnum from 0 to MaxBase2Bits *)
bits := bits MOD (MaxBase2Bits + 1);
ExNumb(O, 5, 0, Half);

FOR ShiftCnt := 1 TO bits DO
IF Shiftright THEN

(* save the bit to be shifted *)
SavedBit := BitSet(number, 0);

(* shift the number right *)
ExMult(number, number, Half);
ExTrunc(number);
IF SavedBit THEN
ExSetBit(number, number, MaxBase2Bits-l);
END;

ELSE
(* save the bit to be shifted *)

SavedBit := BitSet(number, MaxBase2Bits-l);

(* shift the number left *)
ExMult(number, number, rwo);

48 AC's TECH

(* Constrain number to be within the logical number set
*)

Resul t : = number;
ConstrainExNum(Result) ;

END LRotate;

(*----------*)
(* Exported procedures.

PROCEDURE ExAnd (VAR Result ExNumType;
opl, op2 ExNumType) ;

BEGIN
LOp (Result, opl, And, op2) ;

END ExAnd;

PROCEDURE ExOr (VAR Result: ExNumType;
opl, op2 ExNumType) ;

BEGIN
LOp (Result, opl, Or, op2);

END ExOr;

PROCEDURE ExXor (VAR Result: ExNumType;

*)

opl, op2 : ExNumType);
BEGIN

LOp (Result , opl, Xor, op2);
END ExXor;

PROCEDURE ExIntDiv (VAR Result: ExNumType;
opl, op2 : ExNumType);

BEGIN
(* Constrain inputs to be integers *)

ConstrainExNum(opl); ConstrainExNum(op2);
ExDiv(Result, opl, op2);
ExTrunc(Result);

END ExIntDiv;

PROCEDURE ExMod (VAR Result: ExNumType;
opl, op2 : ExNumType);

BEGIN
(* Result opl - (opl DIV op2) * op2 *)

ConstrainExNum(opl); ConstrainExNum(op2);
ExIntDiv(Result, op!, op2);
ExMult (Result, Result, op2);
ExSub (Resul t, opl, Result) ;

END ExMod;

PROCEDURE ExSetBi t (VAR Resul t : ExNumType;

BEGIN

number
bitnum

ExNumType;
: CARDINAL);

LBi t (Resul t, number, Or, bi tnum) ;
END ExSetBit;

DJComputers.cz

Huge Numbers Part II
PROCEDURE ExClearBit (VAR Result: ExNumType;

BEGIN

number
bitnum

ExNumType;
: CARDINAL);

LBit (Result, number, AndNot, bitnum);
END ExClearBi t;

PROCEDURE ExToggleBi t (VIlli Resul t : ExNumType;
number ExNumType;
bitnum : CARDINAL);

BEGIN
LBi t (Resul t, number, Xor, bi tnum) ;

END ExToggleBit;

PROCEDURE ExOnesComp (VAR Result: ExNumType;
number : ExNumType);

BEGIN
(* Constrain number to be within the logical number set

*)

ConstrainExNum(numbcr);
IF number. Sign positive THEN

(* Subtract from the maximum number *)

ExSub (Result, MaxNumber, number) ;
ELSE

(* Subtract from the minimum number *)

ExSub (Resul t, MinNumber, number) ;
END;

(* Complement the sign bit *)

ExChgSign(Result);
END ExOnesComp;

PROCEDURE ExShl (VAR Result: ExNumType;

BEGIN

numbGr
numbits

ExNumType;
: CARDINAL);

LShift (Result, number, ExMult, numbits);

(* Determine the resul tant sign *)

IF BitSet (Result, MaxBase2Bits-l) THEN
Result.Sign negative;

ELSE
Result.Sign := positive;

END;
END ExShl;

PROCEDURE ExRol (VAR Result: ExNumType;

BEGIN

number
numbits

ExNumType;
: CARDINAL);

LRotate(Result, c!lcnber, [,eft, numbits);
END ExRol;

PROCEDURE ExShr (V2\R Result: ExNumType;

BEGIN

number
numbits

ExNumType;
: CARDINAL);

LShift(Result, number, ExDiv, numbits);
ExAbs(Result); (* clear the sign *)

END ExShr;

PROCEDURE ExAshr (VAR Resull ExNumType;

VAR
ShiftCnl
SavedBit

BEGIN

number
numbits

CARDINAL;
BOOLEAN;

ExNumType;
CARDINAL) ;

(* Constrain number to be wi thin the logical number set
*)

ConstrainExNum(number);

(* constrain bitnum from 0 to MaxBase2Bits *)
IF numbits > MaxBase2Bits THEN

(* shifted out of range *)
Result := ExO;
RETURN;

END;

(* set the SavedBit to the current sign *)

SavedBit := number. Sign = negative;

(* shift the number *)

FOR ShiftCnt : = 1 TO numbits DO
(* shift the number right *)

ExDi v (number, number, Two) ;

(* res tore the saved bi t *)

IF SavedBit THEN
ExSetBit(number, number, MaxBase2Bits-l);
END;

END;

(* truncate any fraction *)

Resul t : = number;
ExTrunc(Result);

END ExAshr;

PROCEDURE ExRor (VAR Result: ExNumType;
number ExNumType;
numbits : CARDINAL);

BEGIN
LRotate(Result, number, Right, numbits);

END ExRor;

(*$S-*)
PROCEDURE StrToExInt (S

Base
VAR A

VAR

: ARRAY OF CHAR;
BaseType;
ExNumType) ;

EndCnt, InCnt : INTEGER;
Multiplier INTEGER;
Scale, Temp :

PROCEDURE DigitIs () : LONGINT;
VAR

Str : ARRAY [0 .• 1] OF CHAR;
Digits: LONGINT;

BEGIN
(* Extract a digit *)

Str[O] S[InCnt]; Str[l] .- OC;
INC (InCnt) ;

IF NOT ConvStrToNum(Str, Digits, Base, FALSE) THEN
ExStatus := IllegalNumber;

RETURN 0;
END;

RETURN Digits;

VOLUME 4, NUMBER 2 49

DJC
om
pu
ter
s.c
z

Huge Numbers Part II
END Di gi tIs ;

BEGIN
A : = Ex O;
InCnt := 0 ;

EndCnt : = Leng t hSt r (S) ;
ExN umb (Base , 0, 0 , Sc ale) ;

(* s kip l e ading b l ank s *)

WHILE (InCnt < EndC nt) & (S[InCn t] ") DO I NC (InCn t)
END;

WHILE (InCnt < EndC nt) & (ExSt a tus # Ill egalNumber) DO
ExNumb(Dig itIs () , 0, 0, Temp);
ExMu l t (A , A, Scal e) ;
ExAdd (A , A, Temp) ;

END ;
END StrT o ExInt ;

+

*, X
1,+

.,
{> ••
%
r
&,AND,·
I,OR
XOR
CPL
MOD
DIY
SQRT
CBRT
ROOT
e
e"
LN
LOG
(A)SIN
(A)COS
(A)TAN
(A)SINH
(A)COSH

CBIT
TBIT
SHR
SHL
ASR
ROR
ROL
Mn
STMn
Pi
SCI
BASn
DIGn
DPn
DRG

Addition
Subtraction
Multiplication
Division
Squared
Cubed
Reciprocal
Brackets
Power
x 0.01
Factorial
Logical And
Logical Or
Logical Exclusive Or
Logical Complement
Modulo
Integer Division
Square Root
Cube Root
Any Root
Natural Log Base
Powerote
Natural Logarithm
Base 10 Logarithm
(Arc)Sine
(Arc)Coslne
(Arc)Tangent
(Arc)Hyperbolic Sine
(Arc)Hyperbolic Cosine

Tangent

Clear Bit
Toggle Bit
Shift Right
Shift Left
Arithmetic Shift Right
Rotate Right
Rotate Left
Memory Location n
Store to Memory n
Constant Pi
Toggle SclentlflclFloating Pt.
Change to Base n
Use n Digits
Use n Decimal Places
Toggle DegreelRadlan/Grad

Table 2: Calculator Operations and Commands

50 AC's TECH

PROCEDURE ExIntToStr (A : ExNumType;
Base BaseType;
VAR S : ARRAY OF CHAR);

VAR
InCnt : INTEG ER;
InvScale, Scale, Temp, Temp2 : ExNumType ;

PROCEDURE PutDigits (Numb: LONGCARD) ;
VAR

Str : ARRAY [0 . . 80] OF CHAR ;
Ok : BOOLEAN ;

BEGIN
Ok : = ConvNumToStr(Str, Numb , Base , FALSE , 4, '0');
InsertSubStr(S, Str , 0) ;

END PutDigits;

BEGIN
(* Constrain number to be wi thin the logical number s e t

*)
Constra i nExNum(A);

S : = u u ;

InCnt := 0 ;
ExNumb(Base, 0, 0, Scale);
xtoi (Scale , Scal e, 4) ;
ExDi v (InvScale , Exl, Scale) ;

(* translate number to a st r ing *)

REPEAT
(* Temp : = A MOD Scale *)

ExMult (Temp2, A, InvScale) ;
ExTrunc(Temp2) ;
ExMult(Temp , Temp 2 , Scale) ;
ExSub (Temp , A, Temp) ;

(* Translat e to characte r *)
PutDigits(ExT o LongCard (Temp)) ;

(* Reduce A by scaling factor *)

A : = Temp2;
UNTIL IsZero (A) ;

END ExIntToStr;

BEGIN
(* create t h e number 2 *)

ExNumb (2, 0, 0 , Two) ;

(* Initialize the max i mum n umber *)

xtoi (MaxNumbe r, Two , MaxBas e 2Bits) ;
ExSub (MaxNumber, MaxNumber, Exl) ;

(* Ini tia l ize the minimum number *)

MinNumber : = MaxNumber;
ExChgSign(MinNumber) ;

(* I nitialize the zero logical *)

FOR Cnt : = 0 TO LogicalSize DO
LogZ e ro[Cnt] .- {};

END;
END ExIntegers .

DJComputers.cz

Huge Numbers Part II

Listing Two

IMPLEMENT!'.TlON MODULE ExMathLibO;

FROM ExNumbers IMPORT ExNumType, ExAdd, ExSub, ExHul t,
ExDiv,

ExChgSign, ExAbs, ExCompare, e,
ExCompareType, ExTimeslO, ExO,

Ex1,
ExDivlO, WriteExNum, ExNumb,

ln2, lnlO,
pi, ExTrunc, Get ExpMant,

GetMaxDigits,
ExToLongInt, StrToExNum, ExFrac,
SetMaxDigits, ExStatus,

ExStatus'I'ype,
IsZero, SignType, ExNumToStr;

FROM InOut IMPORT WriteString, WriteLn, WriteCard;
FROM LongRealConversions IMPORT ConvLongRea 1 ToStr,
ConvStrToLongReal;
FROM LongMathLibO IMPORT arctanD, arccosD, sinhD, coshD,
tanhD,

sinO, cosO, tanD, arcsinD, expO,
lnD,

logO, powerD, sqrtD;
FROM RealSupport IMPORT OpenLongReal, OpenLongReal Trans;

VAR
ToRadians
ToDegrees
Fact500
FactlOOO
Fact2000
Fact3000

ExNumType;
ExNumType;
ExNumType;
ExNumType;
ExNumType;
ExNumType;

PROCEDURE ExNumI'oLongReal Ix : ExNumType)
VAR

Num : LONGRE!'.L;
Str : ARMY [0 .. ROJ m CHAR;

BEGIN

LONGREAL;

I * Convert ExNum into LONGREAL via a string *)

ExNumToStr lx, 0, 0, Str);
IF ConvStrToLongReal (Str, Num) THEN

RETURN Num;
ELSE

RETURN O. OD;
END;

END ExNumToLongReal ;

PROCEDURE LongReal ToExNuIT. I x : LONGREAL; VAR Resul t
ExNum'I'ype) ;
VAR

Str : ARRAY [0 .. 80J OF CHAR;
BEGIN

I * Convert LONGREAL into an ExNum via a string *)
IF ConvLongRealToStrlStr, x, 1, " ") THEN

StrToExNumlStr, Result) ;
ELSE

Result := ExO;
END;

END LongReal ToExNum;

PROCEDURE xtoi IVAR ResulL ExNumType; x ExNumTypc; i
LONGIN'I) ;

I * From Knuth, slightly altered p442, The Art Of
Computer Programming, Vol 2 *)

VAR
Y : ExNumType;
negative: BOOLEAN;

BEGIN
Y : = Exl;
negative := i < 0;
i : = ABS Ii);
LOOP

IF ODDli) THEN ExMultlY, Y, x) END;
i := i DIV 2;
IF i = 0 THEN EXIT END;
ExMultlx, x, x);

END;
IF negative THEN

ExDivlResult, Exl, Y);
ELSE

Result Y;
END;

END xtoi;

PROCEDURE Root IVAR Result: ExNumType;
x ExNumType;
i LONGINT);

1* Use iterative solution of a general root equation *)

VAR
y, yp, f, g, t : ExNumType;
root : LONGREAL;
negate : BOOLEAN;

BEGIN
IF I Ix.Sign = negative) & -ODDli)) OR Ii < 2) THEN

ExStatus := IllegalNumber;
Result := ExO;

ELSIF IsZero Ix) THEN
Result := x;

ELSE
1* handle negative roots *)
IF x.Sign = negative THEN ExAbslx); negate := TRUE
ELSE negate .- FALSE
END;

1* estimate of the ith root *)
root : = 1. OD I FLOATD Ii) ;

LongRealToExNumlpowerD(ExNumToLongReallx) , root),
yp);

ExNumb Ii, 0, 0, f); I * i *)

0, 0, g); (* i 1 *)

(* calculate the root *)
LOOP

(* Y := Iii * Iyp * + x I *)
ExMult(y, yp, g);
xtoi(t, yp,
ExDiv(t, x, t);
ExAddly, y, t);
ExDiv(y, y, f);

IF ExCompare (y, yp) ExEqual THEN EXIT END;
yp y;

END;

(* adjust the number's sign *)

Result := y;
IF negate THEN ExChgSign (Result) END;

END;
END Root;

PROCEDURE poweroflO (VAR Result ExNumType; x : LONGINT);
BEGIN

ExNumb(l, 0, x, Result);

VOLUME 4, NUMBER 2 51

DJC
om
pu
ter
s.c
z

Huge Numbers Part II
END poweroflO;

PROCEDURE RadToDegX(VAR radianAngle : ExNumType),
(* Convert a radian measure into degr ees *)

BEGIN
ExMult (radianAngle, ToDegrees, radianAngle),

END RadToDegX,

PROCEDURE DegToRadX (VAR radianAngle : ExNurnType) ;
(* Convert a degree measure into radians *)

BEGIN
ExMult (radianAngl0, ToRadians, radianAngle);

END DegToRadX;

PROCEDURE sqrtX(VAR Result ExNurnType; x F:xNumTypc);
BEGIN

Root (Result, x, 2),
END sqrtX,

PROCEDURE lnX (VAR Resul t : ExNumType, x : ExNurnType) ,
BEGIN

LongRealToExNurn(lnD(ExNurnToLongReal (x)), Result),
ENfllnX,

PROCEDURE logX (VAR Result: ExNumType, x : ExNumType) ;
BEGIN

LongRealToExNum (logO (ExNurnToLongReal (x)),
END logX;

PROCEDURE factorial (VAR prevn, currentn : LONGINT;
VAR PrevFact, Result: ExNumType);

(* Implements an incremental factorial using a previously
calculated value. *)

VAR
i : LONGINT,

BEGIN
FOR i' : = prevn+1 TO currentn DO

(* PrevFact : = PrevFact * FLOAT (i); *)

ExNumb(i, 0, 0, Result);
ExMult (PrevFact, PrevFact, Result) ,

END,
prevn : = curren tn;
Result := PrevFact;

END factorial;

PROCEDURE factorialX (VAR Result ExNumType; n :
LONGINT) ,
CONST
MaxFactorial = 3249,

VAR
fact LONGINT,
prev ExNumType;

BEGIN
IF (n < 0) OR (n > MaxFactorial) THEN

ExStatus := IllegalNumber;
Result := ExO;
RETURN;

END;
IF n < 500 THEN prev : = Ex1;
ELSIF n < 1000 THEN prev := FactSOO;
F:LSIF n < 2000 THEN prev : = Factl 000;
ELSIF n < 3000 THEN prev: FacU 000,
ELSE prev := FactJOOO,
END;
factorial(fact, n, prev, Result);

52 AC's TECH

fact . - a
fact : = 500
fact : = 1000
fact .- 2000
fact . - 3000

END factorialX;

PROCEDURE expX (VAR Resul t ExNumType; x ,ixNumType);
VI\R

xPower : LONGEEAL;
BEGIN

xPovIer : - ExNumToLongReal (x) ;
ExFrac (x) ;
IF (ABS(xPower) <FLOATD(MAX(LONGINT))) &lsZero(x)

THEN
xtoi (Resul t, ie', TRUNC

ELSE

)) ;

LongReal ToExt'd:, (expD (xPowcr I , Result) ;
END;

END expX;

PROCEDURE powerX (\7AR KesulL x, y
F:xNumType) ,
Vlffi

yPower : LONG REAL ;
BEGIN
yPower : ExNumToLongReal (y) ;
ExFrac (y) ;
IF (ABS (yPower) < FLOATD (MAX (LONGINT))) & TsZero (y)

THEN
xtoi(Result, x,

ELSE
LongRealToExNum (po',vcrD (l',xcJUl' :'oLongReal (x) ,yPower) ;
END;

ENDpowerX;

PROCEDURE rootXIVAk Fes'Jl" x, y
ExNurnType) ;
VAR

yRoot : LONGREAL,
BEGIcJ
yRoot: ExNumToLongReal(y);
ExFrac (y) ;
IF (ARS(yRoot) < FLOATD(MAX (LONGINT))) & IsZero(y) THEN

Root (Result, x, TRUNC (yRoot)) ,
ELSE

yRoot : = 1. OD / yRoot ;
LongReal ToExNum I r:/JunnJ LongReal (x) ,yRoot) ,Re"ul t) ;
END;

END rootX;

PROCEDURE sinX
BEGIN

ExNumType; x : ExNumTypc);

LongReal ToExNuf (coin) i I ,ongReal (x)) , Result I ;
END sinX,

PROCE:JURE cosX (VAR Resul t : ExNurn'l'ype; x : ExNum'lype) ,
RFGTN

(x)), Result);
END cosX;

PROCEDURF: LanX (VAR Resul t : ExNumType; x : ExNumType) ;
BEGIN

LongRealToExNurn (tanD (ExNumToLonqHeal (x)), Result),
END tanX;

PROCE:JURE alctanX (VAR Resul t : ExNumType; x : ExNumType) ;
BEGIN

LongReal';'oEx:c\Jurn (arctanD (RxNumTo['ollyReal (x)) , Result) ;
END arctanX,

DJComputers.cz

Huge Numbers Part II

PROC'CDURE coshX (VAR ResuJ L : ExNumTypr>; x : ExNumType) ;
BEGIN

LongRealToExNum (coshD (J':xNumco',onql\eal (x)), Result);
END coshX;

PROCF::JURE sinhX (VAR Resul: : ExNumType; x : ExNumType) ;
BEGIN

ReC':11t);
END sinllX;

PROCEDC?C (Vid': :;'::c;ult : ExNumType; x : EzI']I;ml'/pe) ;
BEGIN

LongReal'1o]<,xN,lll1 (. d'lllD i ExNumToLongReal (x)) , Fesu::) ;

END tanhX;

PROCEDURE arccoshX (VAR Hesul t ExNurn'l'ype; x :
ExNumType) ;
VAR

Temp : ExNumType;
BEGIN

(* Hesult = In(x + sqr:: !x*x 1)) *)
ExMult (Temp, x, x);
ExSublTemp, Temp, Exl) ;
sqrtX (Tem,,:, Ter:;p) ;
ExAdd (Temp, ;', Temp I ;

InX(Ref;ult, Temp) ;
END arccc,c;llX;

PROCEDlJk]<'

ExNum'l"ne) ;
VM

('/;'<.8. Resul t ExNumTypc; x :

LongRealToExNum(arccosD (ExNu.rnToLongReal (x)) , Resu I.t) ;
END arccosX;

BEGIN
(* Open the math package *)

IF NOT OpenLongReal () THEN
Wri teString ('Long Real library open failed! ') ;

WriteLn;
HALT;

END;

(* Open the LONG HEAT: math transcendental package *)
IF NOT OpenLongReal Trans () THEN

Wri teString ('Long Real Trans library open failed! ') ;
WriteLn;
HALT;

END;

(* Initialize a few internal conversion constants *)

ExNumb(180, 0, 0, ToDegrees);
ExDi v (ToDegrees, ToDegrees, pi) ;
ExDi v (ToRadians, Exl, ToDegrees) ;

(* Speed up very large factorials *)
SLrToExNum(
"1.220136825991110068701238785423046926253574342803193E+1134",
FactSOO);
StrToExNum(
"4.02387260077093/,]5437024339230039857193748642107146E+2567",
Fact1000) ;
StrToExNum(
"3.3162750924506337,1 i 175393380')'16324038281117208105780E+5735" ,
Fact2000) ;
StrToExNum(
"4. 149359603437854085556867093086612170951119194931810E +9130",
FactJOOO) ;

Temp : ExNumType; ErID ExMaLhLibO.
BEGIN

(* Result = In(x + sqrt(x*x + l)! *)
ExMult (Temp, x, x) ;
ExAdd(Temp, Temp, Exl) ;
sqrLX (Temp, Temp) ;
Exl\dd (Temp, x, Temp) ;
InX(Result, Temp);

END arcsinhX;

PROCEUlk::' ,"r ctanllX \ 'i,\R Resul t ExNumTyp<: x
ExNumTync! ;
VAR

Temp I Temp2 : i

BEGIN
(* EesuL - In((1 + xi (1 - x)) / 2 *)

ExAdd(Temp, Ex}, x);
ExSub (Temp2, Exl, x) ;
ExDiv(Temp, Temp, Temp2);
InX (Resul t, Temp) ;
ExNumb(O, 5, 0, Temp);
ExMult(Result, Result, ':'ewp);

END "rctanhX;

PROCEDURE arcsinX(VAR Result : ExNurrCype; x: ExNumType);
BEGIl::
Longkeal ToExNum (arcsinD (ExNwnToLongEeal (x)) , Result) ;

END arcsinX;

PROCEDURE arccosX (VAR Result ExNull1Type; x : ExNumType);
BEGn:

(* Repl

Complete
source code & listings
can be found on the

AC's TECD disk.

Please write to:
Michael Griebling

elo AC's TECD
P.O. Box 2140

Fall MA 02722

VOLUME 4, NUMBER 2 53

DJC
om
pu
ter
s.c
z

68881/68882
First the co-processor. There are eight additional registers (FPO to

FP7) in the 68882 all designed for high precision, high speed math
operations. A special advantage of these registers is that you don't have
to open any library to use them so there are no offsets to worry about. Be
sure though, to have the MA THIEEEDOUBBAS and
MATHIEEEOOUBTRANS libraries available in your Libs: directory.
While these two libraries are not called directly by the math co-proces­
sor, they are used indirectly by the various commands.

The commands for these registers are very easy to use and mainly
involve putting a F in front of most of the Single-precision commands
I've previously written about (see AC's TECH Volume 2 Number 2). The
extensions, however, are a little different since we can now handle
numbers in several formats at one time. In addition to the usual.B, .W,
and .L extensions we'll use :

54 AC's TECH

• S (single-precision)
. X (extended-precision)

.0 (double-precision)
.P (packed number)

Any operation can be performed on any fp register . While this
doesn't sound like sucha big deal, remember that with double-precision
all commands used dO/dl or dO/dl and d2/d3 . It not only took four
registers to add two numbers, but you could only use the first four;
multiple operations required you to save the result in two more registers
or use a variable. With the fp registers you can move a value to any
register, add any two registers, and add a variable/constant and a
register. And, they're fast! They're a lot faster than single-precision and,
of course, a lot more precise.

DJComputers.cz

Let's look at some of the more common fp commands.

FMOVE.D #.01234S6789,FP2 - move a double-precision value
directly into a fp register

FMOVE.D 2(A5),FP3 - move the double-precision value at
2(aS) into a fp register

FMOVED FP4,0(A5) - move the value in the fp register to
a double-precision value at O(aS)

FMOVE.X FPO,FPl - move the fp value from one fp

FMOVE.L FP7,ACROSS

FMOVE.L FP6,Dl

register to another
- move the integer value in the fp

register to a long-word variable
- move the integer value in the fp

register to a data register

The rest of the commands are variations of the SP or DP commands

FADDD 2(A5),FPl
FSUB.X FPl,FP2
FMUL.D 4(AS),FPO
FDIV.x FPS,FPO
FSIN.x FPl

- add a dp variable and an fp register
- subtract two fp registers
- multiply a dp variable and an fp register
- divide two fp registers
- get the sin of the value in an fp register

Well, you can see how the commands would go. I've included a list
of the major commands in Table I although this article doesn't use most
of them. If the command uses multiple registers, the second fp register
contains the results. So inFADD.x FPO,FPl fpl would contain the result
of adding the two fp registers; fpO would still contain it's original value.

ANOTHER CODE TECHNIQUE
You'll notice that several of the examples above use an offset from

register as as the variable to add to the fp register. That's because most
of the variables in the program for this article are referenced relative to
as. Initially, each variable is equated to it's distance from a starting
variable VI or V2. If the first variable is E it's distance is zero so E EQU
O. In the second half of the program there are several long-word double­
precision values. At the end of the program they are stored as:

V2:

E DC.L 0,0
Wl DC.L 0,0
W2 DC.L 0,0

All DC.L 0,0

811 DC.L 0,0

At the beginning of the program I equate all of these variables to their
distance from V2:

E EQU

Wl EQU

W2 EQU 16

All EQU 40

811 EQU 72

Now, all I have to do is include the line LEA V2(PC),AS and all variables
can be referenced by name as an offset from as. For example, FADD.D
Bll (AS),FPO will add the variable bll tothevalueinfpO. This cuts down
on code length since variables are now considered as an offset instead
of having to reference their actual locations. Of course, values can be
moved to the variables using the same method; FMOVE.D FPO,E(AS)

moves the value in fpO to the dp variable E. Just remember to equa te your
variables as a distance from the initial variable, store your variables in
order and put the first variable location in an address register (usually
a4 or as) that won't be used again; if the register must be used, keep
restoring the variable location.

Look at the difference in code for these four lines:

FMOVE. L LABELl (AS), FPO

FMOVE. L LABEL2, FPO

FMOVE. L FPO, LABELl (AS)

FMOVE.L FPO,LABEL2

F22D 4000 0008
F23A 4000 0010
F22D 6000 0008
F239 6000 0000 0018

You can see that PHXASS tries to optimize the code and succeeds except
in the last case. Using LABEL(AS), however, keeps the code length
down to six bytes. In a future article we'll see how PHXASS can optimize
all four examples.

ANOTHER ASSEMBLER
Now for a new assembler. This article uses PHXASS and PHXLNK,

from Fish Disk #8S3, by Frank Wille. This is the only PD/Shareware
assembler I know about that uses the 68881/68882 FPCP. It will also
accept the various different commands for the 68000/10/20/30/40.
There are some specific things you need to do with your code when
using PHXASS. First, if you're going to use the math chip, include the
command FPU 1 near the beginning (the "1" is actually optional); and
if you're going to use any specific 68030/40 commands, also include
MACHINE 68030 or MACHINE 68040 at the beginning. This will, of
course, keep your program from running on a 68000/10/20.

Some peculiarities of this assembler are:
1) All include files must be in quotes - this took me several weeks to
figure out!
2) References can not include a "." such as in NW.RASTPORT; you must
use NW _RASTPORT. I rewrote all of my include files to be written this
way.
3) A macro can not begin with "@" to show it is different. In my program
I'm using a special PSET so I tried calling it@PSET, but no go. So I deleted
CFXMACRO.I and put all graphics macros at the beginning of the
program.
4) There is a problem with some macros that use NARC. If there are no
arguments passed, NARC may be 1 instead of o. Just re-write that
portion as code instead of as a macro.
S) The assembler will accept MOVE.L #7D,DO instead of #$7D; it only
stores the #7, however, in DO.
6) You may have to include SECTION <name>,CODE at the beginning
of your program to avoid an "out of memory" error.

The good news is that all of these bugs and others have been
corrected by Mr. Wille. I registered with him by sending him $IS.00 and
got a new PHXASS version (V3.S8) in under two weeks! Since I'll only
be using, however, the version on the fish disk, this program is written
to compensate for the bugs in that version. I urge you to register with Mr.
Wille if you're going to do any assembly language programming.
PHXASS is fast! Also, for your convenience, I've included P ASB - a script
file that will assemble your .ASM file, PHXLNK it and delete the .0 file.
The DOC files for PHXASS and PHXLNK are also included on the
magazine disk.

CHAOS AND BEAUTY
To demonstrate the use of floating-point numbers I combined two

different programs that graphically display Chaos and beauty. Chaos is
a fairly new theory that demonstrates how nothing can be perfect, that
there are always subtle changes in everything. But, in the long run, these

55

DJC
om
pu
ter
s.c
z

Programming the Amiga in Assembly Language

changes still produce an overall effect that can be predicted. Most of the HOW TO COLOR
Chaos equations show how you can start with random values and A key question was how to color the display. Using the distance
eventually settle down to some type of organized display. from a fixed point produced circular bands of color and changing color

The first program comes from the book "Symmetry in Chaos" by every n'th. dot produced real chaos. I finally decided to color a point
Field and Golubitsky. In their equations using complex numbers (those depending on how many times it's been PSET. This requires an array for
numbers with i, the square root of -1) they make extensive use of the each pixel on the screen - all 639*399 of them! Every time a point on the
conjugate of a complex number Z. If Z=X+iY then the conjugate of Z, screen is set the same location in the array is increased by 1. The value
called Zbar, is X-iY. Z squared is X*X-y*y +2iXY while Zbar squared is in the array is used to look up the corresponding value in COLORSCALE,
X*X-Y*Y-2iXY; and Z*Zbar is X*X+Y*Y. an array of colors. If a point has bees set 102 times, the 102nd. value in

Their equations produce very complex but symmetrical patterns. COLORSCALE is 9, so that color is used to PSET that point. The
The variables used are: L, A, B, 0, G, and N where N is the degree of maximum number of times a point is set is 255. While this doesn't seem
symmetry, at least 3. Once an original Z with X and Y coordinates has like very many times, it takes quite a while for the entire display to
been selected the next Z value is found by the rather formidable become color 15. By the way, some palettes start with very low colors so
equation: it may look like a blank screen, but don't worry, they're on their way. I
F(Z) = [L+A*Z*Zbar+B*real(Z-N)+O*iJ *z+G*Zbar- (N-l). would let each display run for at least 10 minutes or more; to get the full

Not to worry though, this equation can be simplified in Basic as:

LOOP

zzbar=x*x+y*y
zreal=X: Zimag=Y
POR 1=0 TO N- 3

ZA=Zreal*X-Zimag*Y
zB=zimag*X+Zreal·Y
Zreal=ZA: zimag=ZB

NEXT I
P=L+A*ZZbar+B* (x*zreal-Y*Zimag)
newX=P·X+G*Zreal-O·Y
newY=P*Y-G*Z!mag+O*X
X=newX:Y_newY:GQTO LOOP

What gets plotted is (320+X*Xscale,200-Y*Yscale). The scale factors
need to be computed for each set of display values. There are 12 data
lines of values near the end of the program for you to experiment with.
You can change L through G or just N. If you change N, however, it
usually must increase or decrease by multiples of 2. We'll go over this
equation in more detail when I discuss the listing.

The other equation is a completely different approach to Chaos. It's
from an article by James Yorke entitled "Quasiperiodicityversus Chaos";
even in 1984 when this was written, Chaos was an item of interest. In this
program 16 constants are initially selected and then three random
constants (E, WI, and W2) are used to create different displays. The
formula uses a modified Fourier series to sum the initial random X and
Yvalues to produce a newX, newY. The program for this is:

LOOP

Pl=All*SIN(PP(X+Bll» + A12*SIN(PP(Y+B12» + A13*SIN(PP(X+Y+B13» +
A14*SIN(PP(X-Y+B14))

P2=A21*SIN(PP(X+B21» + A22*SIN(PP(Y+B22» + A23*SIN(PP(X+Y+B23» +
A24 (SIN(PP(X-Y+B24»

newX= (X+Wl+E*Pl/PP) MOD 1
newY={Y+W2+B*P2/PP} MOD 1
GOTO LOOP

The A and B variables are predefined in the program; PP is 2*PI and E,
WI, and W2 are the three variables that produce the display. MOD
means to divide and use the remainder, so MOD 1 eliminates the whole
number portion and uses only the decimal. The points actually plotted
are (639*X,399*Y). There are twelve Chaos data lines at the end of the
listing.

When you start the program, CHAOS, there is a reminder of what
the hot keys are. Using the RMB you'll see that there are two groups of
displays, Symmetry and Chaos. You can switch at any time to any menu
item. Each drawing starts with it's own palette but you can press F1
through FlO to change palettes. And, at any time, you can press the up­
arrow key to cycle the palette colors except for the background color.

56 AC'sTECH

effect let each display run for about an hour. While the picture is
drawing try all the palettes and color cycle each. Oh, the names for the
displays are entirely my own and reflect the author's opinion.

Now let's look at the program, Listing1. Notice that my include
files are in quotes. All the variables for both halves of the listing,
Symmetry and Chaos, are equated or listed. The actual A and B values
for Chaos are shown, but the B values are multiplied by PP (2*Pi) before
storing them at the end of the program. Look at the PI and P2 formulas
again and you'll see why that's much quicker. After opening a 640x400
screen and window, the libraries and a 640x400 array the program
reminds you of the hot keys and waits for a menu selection. Notice that
for the Symmetry portion variable VI is stored in as since it's followed
by all the Symmetry variables. In Chaos variable V2 is stored in as. The
starting X and Y location can be changed for either program but will
eventually produce the same pattern but not necessarily in the same
order. You'll notice that some of the patterns have a few dots in areas that
never get set again. This is because most Chaos equations take up to 100
iterations before they finally settle down into a pattern. Rather than just
compute 100 blank points, I went ahead and PSET all of them.

CONVERTDP is used by both programs to convert the variables to
double-precision numbers. Since XSCALE and YSCALE for Chaos are
always 639 and 399, their dp values have been precomputed and stored
in the V2 variable array. Also, E gets divided by PP before it's value is
saved since that would have to be done twice during every newX and
newY computation. And, X and Yare also multiplied by PP but at the
start of each computation rather than doing that eight different times
during the computations.

After newX and newY coordinates have been computed the color
is looked up and that location is PSET. Then a menu check is made to see
if you want to change palettes, color cycle, pick a new menu item, or quit.
If you choose a new item the program first checks what menu it's in and
then branches to the item check for that menu. To color cycle, all palettes
go into a general location called COLORTABLE as you use them. When
you press the up-arrow key colorl is stored in d2 then each color value
decreases by 1; at the end, colorl is restored as colorl5.

SYMMETRY
Now let's discuss the actual computations in each program. Both

free the memory array first since there may be values in there from a
previous display. This is immediately followed by a new array call. This
seemed easier and quicker that clearing the entire array to O. When you
start either program, fp7 contains the initial X location, fp6 contains the
initial Y location, as is the variable array address, a4 the COLORSCALE
address, and a3 the COLORS array address.

DJComputers.cz

Programming the Amiga in Assembly Language

In Symmetry, X is moved to fpO and Y moved to fp2. Each is
multiplied by itself, added together and stored in fp2 as ZZBAR
(X*X+Y*Y). X is then moved to fpS as ZREAL and Y to fp4 as ZIMAG.
You can already begin to see the advantage of having eight more
registers and the ability to perform any operation on any combination
of registers. Also, having eight registers, lets us leave some often used
values in a register rather than calling them each time they're used .

The degree of rotation (N) is stored in dO as a counter. Next, Yand
ZIMAG are multiplied, X and ZREAL multiplied, subtracted from the
previous operation and saved in fp3 as ZA. Then X and ZIMAG are
multiplied, Y and ZREAL are multiplied replacing the old ZREAL and
ZIMAG. FpS is saved as the new ZIMAG and ZA as the new ZREAL.
This repeats until dO decreases to below O.

Now multiply Y times ZIMAG, X times ZREAL, and subtract them .
Multiply this by variable B using it's location as B(aS); multiply ZZBAR
(in fp2) by A using A(aS) and finally, add L(aS). This is the temporary
value P in fp3. To get the new X location, multiply G times ZREAL, 0
times Y, and subtract; then add P times X. FpS now contains the new X
coordinate . At this point, fpO contains G, fp2 contains 0 , and fp3
contains P. We can then directly multiply 0 times X, G times ZREAL,
and P times Y. Fp6 will contain the new Y and then move fpS to fp7 as
the new X. By planning ahead, all the variables can be used in most of
the registers at least once.

To compute the points that will be PSET, multiply X by XSCALE
and store the result in ACROSS, adding 320 to center it. Multiply Y by
YSCALE and store the result in both dO and DOWN adding 200 to center
it. The color to be used is in the 640X400 array COLORS (in a3). Multiply
the down location (in dO) by 640 and add ACROSS. Add this distance to
the value in a3 and store the contents of that location in COUNT -
MOVE.B 0(A3,DO.L),COUNT. Add I to COUNT; if the result is 0, we've

TABLE I '

FSIN -sine

already set that point 255 times so skip directly to computing the next
point. If it's not 0, replace the increased COUNT back in the array -
MOVE.B COUNT,0(A3,DO.L). Now get the COUNT value from the'
COLORSCALE array in a4 - MOVE.B O(A4,COUNT),DO. Remember
that COUNT was equated to register d4 back at the beginning of the
program . Use the color value in dO to PSET the point.

This is followed by a message check. Since one of my IDCMP flags
was RA WKEY, the routine looks to see if you have pressed FI through
FlO (raykey #$50 - #$59) or the up-arrow (#$4C). If you have, the
program installs a new palette and continues drawing or cycles the
colors by 1. RAWKEYvalues are different from VANILLAKEYvalues.
While the later is usually the ASCII value for a character, RA YKEY
values are based more on that key's placement and location on the
keyboard; using RA WKEY lets you test for any key or combination of
keys as "hot keys" . When you choose a menu, the program goes all the
way back to HANDLE_MENUO or HANDLE_MENU1. If you don't do
anything the display keeps drawing.

CHAOS
The Chaos program initially frees, then resets the COLORS array,

puts XSTART in fp7, YSTARTinfp6,2*PIinfpS, and #1 in fp2. The array
locations are V2 in as, COLORSCALE in a4, and COLORS in a3. Then E
is moved to fpO, divided by PP, and stored back in E; this is because the
Chaos formulas both use E times a value divided PP. After clearing the
screen the actual computations begin.

First, multiply X and Y by PP and save their product in fp4 (PPX)
and fp3 (PPY). Move PPX to fpO and add Bll(aS). Remember that Bll
has already been multiplied by PP. Get the sine of this value and them
multiply by All(aS); keep this result (All*SIN(PP(X+Bll») in fpO.
Now, add PPX and B12, getthe sine, multiply by A12, and add this to the

lPECtAL

FtS8xx branch
PMOVB - mOve data .
FNOB - no opeq.t:iari
HJxX - set to condition
F$INCOS - get both sine rosine
f'm - test for 0, pceitive. or negative

57

DJC
om
pu
ter
s.c
z

Programming the Amiga in Assembly Language
previous result in fpO. Next, add PPX, PPY, and B13, get the sine,
multiply by A13, and add to fpO. Finally, subtract PPY from PPX, add
H14, get the sine, multiply by A14, and add to fpO. Multiply fpO times E
(actually E/PP), add WI, and add this to the original X in fp7. We need
to keep this value below 1 so FMOD with fp2 (containing 1); this will
delete the whole number and use just the decimal. MOD, by the way,
uses only the result after dividing.

Follow the same procedure to compute a new Y, add this to the
previous Y value, and FMOD 1 it. The points to be PSET are X*XSCALE
and Y*YSCALF.. The dp scales of 639 and 399 were previously com­
puted. You don't need to check screen values in this case since X and Y
can't reach or exceed 1 and the scales are the maximum screen values.
If you add a zoom routine, however, you need the boundary checks
since much of the display would be off the screen and exceed the values
in the COLORS array. Obtaining the color values is the same as for

Symmetry as is the message check.

CHANGES
An obvious addition to this program would be an extra item for

each menu that allows you to choose your own variables for either
program. This would probably have to be done with requesters. Keep
the scales small (128,128) to begin with in the Symmetry program. Weird
things happen when you try to PSET a point off the screen in assembly
language. And you'll also be selecting an incorrect value in the color
array. The Chaos portion could easily include a zoom routine. Many
displays, especially Lava Flow, look much better in close up.

Assemble this program using P ASB as CHAOS. If you want to try
the PHXASS options, assemble it using PHXASS CHAOS.ASM <op­
tions> and link it using PHXLNK CHAOS.O; you can delete the
CHAOS.O file later. Run the program as CHAOS. Listingl, Chaos, the
include files, and PHX files with their docs are included on the magazine

offsets:
setdrmd
10adrgb4

equ -354
equ -192

;aO=vp,al=colortable,dO=#pens
setapen equ -342
writepixel equ -324
setrast equ -234
move equ -240
text equ -60
across equr d6
down equr d5
count equr d4

; Symmetry variables
fp7 x
fp6 Y
fp5 zreal,newx
fp4 zimaginary
fp3 za,p
fp2 temp, 0

fpl temp
fpO temp,g

1 equ 0
a equ 8
b equ 16
g equ 24
0 equ 32
xscale equ 44
yscale equ 52

; Chaos var iables
disk. I've also included some pictures made using this program. fp7 x

I hope you've enjoyed learning about the math chip and it's new fp6
commands; they'll be used in future articles along with the PHXASS fp5
assembler. Remember, when things get dull, put a little CHAOS in your fp4
life. fp3

Listing One e
wI

fp2
fpl
fpO

y
pp (2*pi)
pp*x
pp*y
1
temp
temp

equ 0
equ 8

w2
xscalel
yscale1

equ
equ
equ

16
24
32

; LISTING 1
all equ

fpu 1 ;using the 68882 a12 equ
section text, code al3 equ
bra main a14 equ
include lJexecmacros.i" b11 equ
include "intmacros.i" b12 equ
include "dpmathmacros.i" b13 equ
include "menu.i" b14 equ

40
48
56
64
72

80
88
96

equates: a21 equ 104
depth equ 4 a22 equ
jaml equ 0 a23 equ
jam2 equ $1 a24 equ
size equ $3e800 ;640*400 b21 equ

112
120
128
136

b22 equ 144

58 AC's TECH

DJComputers.cz

Programming the Amiga in Assembly Language
b23 equ 152
b24 equ 160

: a11dp equ.d -.26813663648754
: a12dp equ. d -.91067559396390
;a13dpequ.d .31172026382793
:a14dp equ.d -.04003977835470
:blldp equ.d .98546084298505
: b12dp equ. d .50446045609351
:b13dp equ.d .94707472523078
:b14dp equ.d .23350105508507
: a21dp equ. d .08818611671542
:a22dp equ.d -.56502889980448
:a23dpequ.d .16299548727086
;a24dp equ.d -.80398881978155
; b21dp equ. d .99030722865609
:b22dp equ.d .33630697012268
:b23dp equ.d .29804921230971
: b24dp equ. d .15506467277737

macros:
gfxlib macro ; (routine)

movea.l gfxbase(pc),a6
jsr \1 (a6)
endm

pset macro
move.l rp(pc),a1
move.w across,dO
move. w #399, d1
sub.w down,d1
gfxlib writepixel
endm

color macro
move. 1 rp(pc) ,a1
gfxl ib setapen
endm

palette macro
movea.l vp(pc) ,aD
lea \1(pc),a1
moveq.1 #16,dD
gfx1ib loadrgb4
endm

newpalette macro
lea \1(pc),a1

: (colortable#)

; (colortable#)

lea colortable(pc),aO
move.w #7,dD : 8 long-word values

swap\@
move. 1 (a1)+, (aO)+
dbra.s dD,swap\@
palette colortable :use the new palette
endm

pcls macro
moveq #D,dO
movea.l rp(pc),al
gfxlib setrast
endm

gprint macro :<x,y,color,msg, length>
movea.l rp(pc),a1
move.w #\l,dO

move.w #\2,d1
gfxlib move
moveq #\3,dO
color
movea.l rp(pc),al
lea \4 (pc) ,aO
moveq #\5,dO
gfxlib text
endm

main:
move. 1 sp, stack

open_libs:
openlib int , done
openlib gfx, close_int
openlib dpmath,close_int

set_up:
make_screen:

openscreen myscreen,close_1ibs
openwindow mywindow,close_screen
openmenu menuO
movea.l rp(pc) ,a1
move. 1 #jam1,dO
gfxlib setdrmd

memory:
array colors,close_window
gprint 135,150,2,f1msg,47
gprint 135,200,2,csmsg,40
gprint 135,250,1,nowmsg,35

msg_check
cfm msg_check
cmpi .1 #menupick,d2
beq.s check_menus
bra.s msg_check

check_menus
eval_menunumber
tst.w dO
beq.s handle_menuO
cmpi.w #l,dD
beq handle_menu1
bra.s msg_check

handle_menuO
cmpi.w #0,d1
beq.s do_dataO
cmpi.w #1,d1
beq do_datal
cmpi .w #2,d1
beq do_data2
cmpi.w #3,d1
beq do_data3
cmpi .w #4,dl
beq do_data4
cmpi.w #5,d1
beq do_data 5
cmpi.w #6,dl
beq do_data 6
cmpi.w #7,dl
beq do_data7
cmpi.w #8,d1
beq do_data8

;dO=menu#,dl=item#

: symmetry

: chaos

VOLUME 4, NUMBER 2 59

DJC
om
pu
ter
s.c
z

Programming the Amiga in Assembly Language
cmpi .w #9,dl
beq do_data9
cmpi.w #lO,dl
beq do_datalO
cmpi.w #11, dl
beq do_data11
cmpi .w #12, dl

beq quit
bra msg_check

do_dataO ; autumn
newpalette colortable4
lea dataO(pc),aO
bra get_values

do datal ; spiro
newpalette colortable6
lea datal(pc),aO
bra get_values

do_data2 ; china plate
newpalette colortable3
lea data2(pc),aO
bra get_values

do data3 ; stained glass
newpalette colortable9
lea data3(pc),aO
bra get_values

do_data4 ; origami
newpalette colortable7
lea data4(pc),aO

;lariats
newpalette colortable8
lea data5(pc),aO

;civil defense
newpalette colortable9
lea data6(pc),aO
bra get_values

do_data7 ; pentagram

newpalette colortableO
lea data7(pc),aO
bra get_values

do_data8 ;petals
newpalette colortable8
lea data8(pc),aO
bra get_values

do_data9 ;three fold
newpalette colortable5
lea data9(pc),aO
bra.s get_values

do_datal ° ;rings
newpalette colortable6
lea datalO(pc),aO
bra.s get_values

do datall ; sundial
newpalette colortablel
lea datall(pc) ,aO

get_values:
bsr convertdp
movedp ldp

60 AC'sTECH

movea.l a5,aD
bsr convertdp
movedp adp

movea.l a5,aO
bsr convertdp
movedp bdp

movea.l a5,aO
bsr
movedp

movea.l
bsr
movedp

convertdp
gdp

a5,aO
convertdp
odp

a5,aO

convertdp
dpmathbase(pc),a6
-30(a6) ;dpfix

movea.l
bsr

movea.l
jsr
subq.l #3,dO ;use N - 3
move. 1 dO,n

movea.l a5,aO
bsr convertdp
movedp xscaledp

movea.l a5,aO
bsr convertdp
movedp yscaledp

free colors ;clear previous values
array colors,close_window ;start anew
fmove.d #.015625,fp7 ;x start
fmove.d #.00390625,fp6

movea.l colors (pc) ,a3
lea
lea
pcls
bra

colorscale(pc),a4
vl (pc) ,a5

continuel

handle_menul

cmpi.w #O,dl
beq.s do_chaosO
cmpi .w #l,dl
beq do_chaosl
cmpi.w #2,dl
beq do_chaos2
cmpi .w #3,dl
beq do_chaos 3
cmpi.w #4,dl
beq do_chaos4
cmpi.w #5,dl
beq do_chaos5
cmpi.w #6,dl
beq do_chaos 6
cmpi .w #7,dl
beq do_chaos7
cmpi.w #8,dl
beq do_chaos 8

;y start

DJComputers.cz

Programming the Amiga in Assembly Language
cmpi .w #9,dl

beq do_chaos 9

cmpi.w #lD,dl

beq do_chaoslD
cmpi.w #11, dl

beq do_chaosll

cmpi .w #12, dl

beq quit

bra msg_check

do_chaosD ; sand dune

newpalette colortable2

lea chaosD(pc) ,aD
bra get_valuesl

;lava flow

newpalette colortable3
lea chaosl(pc),aO

bra get_values 1
do_chaos2 ;swirls

newpalette colortablel
lea chaos2(pc) ,aD
bra get_valuesl

;great wall

newpalet te colortableO
lea chaos3(pc),aO
bra get_valuesl

do_chaos4 ; dragon tail

newpalette colortable4
lea chaos4(pc),aO
bra get_values 1

do_chaos5 ; ocean floor
newpalette colortable6

lea chaos5(pc),aO
bra get_valuesl

; waves

newpalette colortable7

lea
bra

chaos6(pc) ,aO

get_valuesl
do_chaos7 ;birds of a feather

newpalette colortable8
lea chaos7(pc) ,aO

bra get_valuesl

do chaosB ; swaying flowers

newpalette colortable9
lea chaos8(pc),aO
bra get_valuesl

do_chaos 9 ;barbed wire

newpalette colortablel
lea chaos9(pc),aO
bra.s get_valuesl

do_chaos 1 0 ; demons

newpalette colortable7

lea chaoslO(pc) ,aO

bra.s get_valuesl
do_chaosll ;profile

newpalette colortableO
lea chaosll(pc),aO

get_valuesl:

bsr convertdp
movedp edp

movea.l
bsr

movedp

movea.l
bsr
movedp

free

a5,aD

convertdp
wldp

a5,aO

convertdp
w2dp

colors
array colors,close_window

fmove.d # .247435829, fp7 ;start x

fmove.d #.577350269,fp6 ;start y
fmove.d #6.283185307179586,fp5 ;2*pi

#1,fp2 fmove.d

lea
lea

movea.l
fmove.d

fdiv.x

fmove.d
pcls

bra

v2(pc),a5
colorscale(pc),a4

colors(pc),a3
e(a5),fpO

fp5,fpO
fpO, e (a5)

continue2

convertdp

moveq.l #0, dO
moveq.l #0, dl
moveq.l

moveq

suba.l
cmpi.b

bne.s
bset
addq.l

positive

getadigit

#0,d4

#O,d5
a2,a2

#' -', (aO)
positive
#31. d4
#l,aO

move.b (aO) +,d5
cmpi.b #'.' ,d5

bne.s
move.w
moveq.l

bra.s
testdigit

cmpi.b

bhi.s

testdigit
#1,a2

#0,d7
getadigit

#'9' ,d5

zerocheck
cmpi. b # ' 0 ' ,d5
blt.s zerocheck

andi.l #$Of, d5
move. 1 dO,d2
move. 1 dl,d3
asl.l #l,dl

roxl.l #1, dO

asl.l #1,d3
roxl.1 #1, d2

asl.l #1,d3
roxl.l #1, d2

asl.l #1,d3
roxl . I # 1 , d2
moveq.l #0, d6

add. I d3,dl

addx.l d2, dD ;dO

;e=e/ (2*pi)

;decimal holder
;negative ?

;set negative sign bit

;next $

;decimal ?

;decimal flag

dO * 10

VOLUME 4, NUMBER 2 61

DJC
om
pu
ter
s.c
z

62

Programming the Arniga in Assembly Language
add. 1 d5,dl
addx.l d6,dO ;dO = dO * 10 + digit
addq.w #1,d7
cmpi.w #16,d7 ;get up to 10 digits
bne.s getadigit

zerocheck
movea.l aO,a5
tst.l dl
bne.s 1$
tst.l dO
beq.s dp_done

1$
move. 1 #$43f.d6 ;maximum exponent

2$
subq.l #1,d6
asl.l #1,dl
roxl.l #1,dO
bcc.s 2$
moveq.l #11,d5 ;# times to shift

shiftdown
lsr.l #1,dO
roxr.l #l,dl
dbra d5,shiftdown
swap d6 ; exponent to high bits
as 1. 1 #4,d6
or.l d6,dO
cmpa #0,a2 ;any decimal
beq.s do_sign
subq.l #1,d7 ;any more digits ?

bmLs do:::sign
fractionalize

move. 1 #$40240000,d2
moveq.l #0,d3 ;10dp

movea.l dpmathbase(pc),a6
jsr -84(a6) ;dpdiv
dbra d7,fractionalize

do_sign
or.l d4,dO

dp_done
moveq.l #0,d6 ;optional OK check
rts

; symmetry program
continuel:

fmove.x fp7,fpO
fmove.x fp6,fp2
fmul.x fpO,fpO
fmul.x fp2,fp2
fadd.x fpO,fp2

fmove.x fp7,fp5
fmove.x fp6,fp4
move. 1 n(pc),dO

iterate
fmove.x fp6,fpO
fmul.x fp4,fpO
fmove.x fp7,fpl
fmul.x fp5,fpl
fsub.x fpO,fpl

AC'sTECH

;x
. ;y

iX * x
;y * y
;zzbar

;x -> zreal
;y -> zimaginary

;y
;y * zi
;x
iX * zr
; (x * zr) - (y * zi)

fmove.x fpl,fp3 iza

fmul.x fp7,fp4 iX * zi
fmul.x fp6,fp5 iY * zr
fadd.x fp5,fp4 ;new zimaginary
fmove.x fp3,fp5 ;new zreal
dbf.s dO, iterate

getp ; ((x * zr) - (y * zi)) * b + (a * zzbar)
fmove.x fp6,fpO ;y
fmul.x fp4,fpO iY * zi
fmove.x fp7,fpl ;x
fmul.x fp5,fpl iX * zr
fsub.x fpO,fpl ; (x * zr) - (y * zi)
fmul.d b(a5),fpl
fmul.d a(a5) ,fp2
fadd.x fp2,fpl ; (a * zzbar) + b((x * zr)

zi))
fmove.d 1(a5),fp3
fadd.x fpl,fp3 ;p

get_new_x ; (g * zr) - (0 * y) + (p * x)
fmove.d g(a5),fpO ;g
fmul.x fpO,fp5 ;g * zr
fmove.x fp6,fpl ;y
fmove.d 0(a5),fp2 ;0
fmul.x fp2,fpl ;0 * y
fsub.x fpl,fp5 ; (g * zr) - (0 * y)
fmove.x fp7, fpl ;x
fmul.x fp3,fpl ;x * p
fadd.x fpl,fp5 inewx

get_news ; (0 * x) - (g * zi) + (p * y)
fmul.x fp2,fp7 ;0 * x
fmul.x fpO, fp4 ;g * zi
fmul.x fp3,fp6 ;p * y
fadd.x fp7,fp6 ; (0 * x) + (p * y)
fsub.x fp4,fp6 ;newy
fmove.x fp5,fp7 ;newy

xpointl
fmove.d xscale(a5),fpO ;xscale
fmul . x fp7, fpO ; x * xscale
fmove.l fpO,across ;int(x * xscale)
addi.l #320,across; centered

ypointl
fmove.d
fmul.x
fmove.l
addi.l
move. 1

mulu
add. 1
moveq
move.b
addq.b
beq.s

;colorl
move.b

yscale(a5),fpO ;yscale
fp6, fpO ;y * yscale
fpO,dO ;int(y * yscale)
#200,dO
dO,down

#640,dO
across,dO
#O,count
0(a3,dO.l),count
#l,count
msg_checkl

count,0(a3,dO.l)

+ 1

- (y *

DJComputers.cz

moveq.l #O,dO

move.b O(a4,count) ,dO

color

pset
msg_checkl

cfm

cmpi .1

beq

tst.w

beq

andi.w

cmpi .w

beq.s

cmpi .w

beq.s

cmpi .w

beq

cmpi .w

beq

cmpi .w

beq

cmpi.w

beq

cmpi.w

beq

cmpi.w

beq

cmpi.w

beq

cmpi.w

beq

cmpi.w

beq

bra

continue1

#menupick,d2

check_menus 1

d3

continue1

#$ffff. d3

#$50,d3

do1-pa1ette1

#$51,d3

do1-palette2

#$52,d3

do1-palette3

#$53,d3

dol-palette4

#$54,d3

do1-palette5

#$55,d3

do1-palette6

#$56,d3

do1-palette7

#$57,d3

do1-palette8

#$58,d3

do1-pa1ette9

#$59,d3

do1-pa1etteO

#$4c,d3

colorcyc1e1

continue1

do1-palette1

newpalette colortab1e1

bra continue1

do1-palette2

newpalette colortable2

bra continue1

do1-palette3

newpalet te colortable3

bra continue1

do1-palette4

newpalette colortable4

bra continue1

do1-palette5

newpalette colortable5

bra continue1

do1-palette6

newpalette colortable6

bra continue1

do1-palette7

newpalette colortable7

bra continue1

do1-palette8

newpalette colortable8

bra continue1

do1-palette9

newpa1et te colortable9

Programming the Amiga in Assembly Language

;palette1 ?

bra continue1

do1-paletteO

newpalet te colortableO

bra continuel

colorcycle1

lea colortab1e(pc) ,aO

move.w 2(aO),d2 ; save #1

move.w #2,d1

move.w #13,dO

cycle1

;13-0=14 changes

move.w 2(aO,d1.w) ,0(aO,d1.w) ;move up one

addq.w #2,d1 ;next color

dbra.s dO,cycle1

move.w d2,30(aO)

usecolors1

;now #15

palet te colortable

bra continue1

check_menus 1

eval_menunumber

tst.w dO
beq handle_menuO

cmpi.w #l,dO

beq handle_menu1

bra continuel

; chaos program

continue2

fmove.x

fmul.x

fmove.x

fmul.x
get_newx2

fp7,fp4

fp5,fp4

fp6,fp3

fp5,fp3

;x

;x * 2pi
;y

;y * 2pi

fmove.x fp4,fpO ;ppx

fadd.d

fsin.x

fmul.d

fmove.x

fadd.d

fsin.x

fmul.d

fadd.x

fmove.x

fadd.x

fadd.d

fsin.x

fmul.d

fadd.x

fmove.x

fsub.x

fadd.d

fsin.x

fmul.d

fadd.x

fmul.d

fadd.d

fadd.x

fmod.x

b11(a5) ,fpO ;ppx + b11

fpO ;sin(ppx + b11)

a11(a5) ,fpO ;a11 * sin(ppx + bll)

fp3,fpl ;ppy

b12 (a5), fp1 ;ppy + b12

fpl ; sin (ppy + b12)

a12(a5) ,fp1 ;a12 * sin (ppy + b12)

fpl,fpO

fp4,fp1

fp3,fpl

;ppx

;ppx + ppy

bI3(a5) ,fp1 ;ppx + ppy + b13

fp1 ; sin (ppx + ppy + b13)

a13(a5) ,fp1 ;a13 * sin (ppx +ppy +bI3)

fpl,fpO

;ppx fp4,fpl

fp3,fpl ;ppx - ppy

b14(a5) ,fpl ;ppx - ppy + b14

fp1 ;sin(ppx - ppy + b14)

aI4(a5) ,fp1 ;a14 * sin(ppx - ppy +bI4)

fp1,fpO

e(a5) ,fpO ; * e/pp

w1(a5) ,fpO ; + w1

fpO, fp7 ; newx

fp2,fp7 ;keep x < 1

VOLUME 4, NUMBER 2 63

DJC
om
pu
ter
s.c
z

64

Programming the Amiga in Assembly Language

get_newy2

fmove.x

fadd.d

fsin.x

fmul.d

fmove.x
fadd.d

fsin.x

fmul. d

fadd.x

fmove.x

fadd.x

fadd.d
fsin.x

fmul.d

fadd.x

fmove.x

fsub.x

fadd.d

fsin.x

fmul.d
fadd.x

fmul.d

fadd.d

fadd.x

fmod.x

xpoint2

fp4,fpO ;ppx

b21(aS) ,fpO ;ppx + b21

fpO ;sin(ppx + b21)

a21 (as), fpO ;a21 * sin (ppx + b21)
fp3, fpl ;ppy

b22(aS), fpl ;ppy + b22

fpI ;sin(ppy + b22)

a22(a5),fp1 ;a:?2 * sin (ppy + b22)
fp1, fpO

fp4, fp1 ; ppx

fp3, fp1 ;ppx + ppy

b23(aS) ,fp1 ;ppx + ppy + b23

fp1 ; sin (ppx + ppy + b23)

a23(aS) ,fpl ;a23 * sin(ppx +ppy +b23)

fpl,fpO

fp4,fp1 ;ppx

fp3, fp1 ;ppx - ppy

b24(aS) ,fp1 ;ppx - ppy + b24

fp1 ; sin (ppx - ppy + b24)
a24(aS) ,fp1 ;a24 * sin(ppx - ppy +b24)

fp1,fpO

e (as) ,fpO ; * e/pp

w2(aS) ,fpO ; + w2

fpO,fp6 ;newy

fp2,fp6 ;keep y < 1

fmove. d xscale1 (as) ,fpO ; xscale

fmul.x fp7,fpO ;x * xscale

fmove.1 fpO,across ;int(x * xscale)

cmpi. w #640, across ; optional boundry check

bhs.s msg_check2
ypoint2

fmove. d yscale1 (as) ,fpO ; yscale

fmul.x fp6,fpO ;y * ysca1e

[move. I fpO,dO ;int(y * yscale)
movo.l

cmpi .w

bhs.s

mulu

add. 1

moveq

move.b

addq.b

beq.s
;color2

move.b

moveq.l

move.b

color

pset

msg_check2

cfm

cmpi.l

beq

tst.w

dO ,down

#400,down

msg_check2

#640,dO

across,dO

#O,count

;optional boundry check

O(a3,dO.l) ,count

#1,count

msg_check2

count, 0 (a3, dO.1)

#O,dO

O(a4,count) ,dO

continue2

#menupick,d2

check_menus2

d3

AC's TECH

beq continue2
andi.w #$ffff,d3

cmpi .w #$50,d3 ;palette1
beq.s do2J)alette1
cmpi .w #$Sl, d3

beq.s do2J)alette2
cmpi.w #$S2,d3
beq do2J)alette3

cmpi.w #$S3,d3

beq do2J)alette4
cmpi .w #$S4,d3

beq do2J)aletteS

cmpi.w #$SS,d3
beq do2J)alette6
cmpi.w #$S6,d3

beq do2J)alette7

cmpi.w #$S7,d3

beq do2J)alette8
cmpi.w #$S8,d3

beq do2J)alette9
cmpi.w #$S9,d3
beq do2J)aletteO
cmpi .w #$4c,d3

beq colorcycle2

bra continue2

do2J)alette1

newpalette colortable1
bra continue2

do2JlaJette2

newpalette colortable2

bra continue2

do2Jlalette3

newpalette colortable3

bra continue2

do2Jldlette4

newpalette colortable4

bra continue2

do2J)aletteS

newpalette colortableS

bra continue2

do2J)alette6

newpalette colortable6

bra continue2

do2Jlalette7

newpalette colortable7

bra continue2

do2J)alette8

newpalette colortable8
bra continue2

do2J)alette9

newpalette colortable9

bra continue2

do2JlaletteO

newpalette colortableO

bra continue2

colorcycle2

lea colortable(pc) ,aO

move. w 2 (a 0) , d2

move.w #2,d1

move.w #13,dO

?

DJComputers.cz

Programming the Amiga in Assembly Language
cycle2

move.w 2(aO,dl.w),0(aO,dl.w)

addq.w #2,dl
dbra.s dO,cycle2
move. w d2 , 3 0 (a 0)

usecolors2
palette colortable
bra continue2

check_menus 2

eval_menunumber

tst.w dO
beq handle_menuO

cmpi .w 1I1, dO
beq handle_menul
bra continue2

quit
free_memory

free colors

close_window:
closemenu

closewindow
close_screen:

closescreen
close_libs:

closelib gfx

close_int:

closelib int
close_dpmath

closelib dpmath

done:
move. 1 stack(pc),sp
rts

even
stack dc.l 0
gfxbase dc. 1 0

intbase dc. 1 °
dpmathbase dc.l °
colors dc. 1 °
vI
ldp dc.l 0,0

adp dc.l 0,0
bdp dc.l 0,0
gdp dc.l 0,0
odp dc.l 0,0
n dc.1 ° xscaledp dc.l 0,0

yscaledp dc.l 0,0

v2
edp dc.l 0,0

wldp dc.l 0,0

w2dp dc.l 0,0

dc.l $4083f800,0

dc.l $4078fOOO,0

dc.l $bfd12926,$9124b2f9

dc.l $bfed2441,$24aae3e9

;xscale=639
;yscale=399

;all
;a12

dc.l $3fd3f339,$8ca90d83 ;a13
dc.l $bfa48018,$05252200 ;a14
dc.l $4018c46f,$e4b5d18b ;bll
dc.l $40095b60,$f5282956 ;b12
dc.l $4017cd76,$25044f54 ;b13
dc.l $3ff7795d,$b989df5e ;b14

dc.l $3fb6935d,$87410403 ;a21
dc.l $bfe214b7,$7cbe9030 ;a22

dc.l $3fc4dd09,$3f9ca9a7 ;a23

dc.l $bfe9ba46,$c2e9f6ec ;a24

dc.l $4018e3ge,$5f3a89cd ;b21
dc.l $4000e795,$f8428ac2 ;b22

dc.l $3ffdf692,$a16fef9c ;b23
dc.l $3fef2d77,$591b29bl ;b24

even
gfx dc. b 'graphics. library' ,0

even
int dc.b 'intuition.library',O

even
dpmath dc.b 'mathieeedoubbas.library' ,0

even
flmsg dc.b 'Press Fl - FlO to change palettes while

drawing' ,0

even
csmsg dc.b

cycle' ,0

even

Press the up-arrow to color

nowmsg dc. b Now select any menu item' , °
even

myscreen
dc.w 0,0,640,400,depth

dc.b 0,1
dc.w $8004

dc. w customscreen

dc . 1 ° , ° , ° , °
even

mywindow
dc.w 0,0,640,400
dc.b 0,1

dc.l menupick!rawkey
dc.l borderless!activate!smartrefresh
dc.l 0,0

dc.l °
dc.l 0,0

dc . w ° , ° , ° , °
dc. w customscreen

even

colortablel

dc.w $000,$fca,$fe6,$ed5

dc.w $ebO,$eb3,$fa6,$fOO
dc.w $855,$OfO,$880,$faa

dc.w $dOe,$6af,$00f,$808
even

colortable2

dc.w $000,$300,$400,$500
dc.w $600,$700,$800,$900
dc.w $aOO,$bOO,$cOO,$dOO

65

DJC
om
pu
ter
s.c
z

dc.w $e20,$f60,$faO,$ffO
even

colortable3
dc.w $000,$200,$400,$600
dc.w $800,$aOO,$cOO,$eOO
dc.w $e10,$e30,$e50,$f70
dc.w $f90,$fbO,$fdO,$ffO
even

colortable4
dc.w $620,$ff2,$fd2,$fa1
dc. w $f81. $f51. $f30, $fOO
dc.w $620,$740,$870,$790
dc.w $6aO,$5bO,$OcO,$fff
even

colortable5
dc.w $a71,$060,$710,$600
dc.w $700,$810,$820,$930
dc.w $a40,$a50,$b60,$b70
dc.w $c80,$d90,$daO,$ecO
even

co1ortable6
dc.w $004,$88f,$fe6,$fe6
dc.w $ebO,$eb3,$fOO,$fOO
dc.w $d99,$a66,$a66,$955
dc.w $954,$854,$843,$fOO
even

colortable7
dc.w $004,$048,$Oba,$Oe5
dc.w $Oea,$Ocd,$07d,$f9a
dc.w $e6c,$c4e,$62d,$02d
dc.w $06e,$Oad,$Odc,$02d
even

colortable8
dc.w $500,$f9b,$d68,$d54
dc.w $d32,$d10,$a1Q,$710
dc.w $fOO,$f33,$f55,$f88
dc.w $faa,$fcc,$fff,$c25
even

co1ortab1e9
dc.w $000,$de9,$ObO,$OB6
dc.w $075,$064,$053,$042
dc.w $032,$geb,$6ca,$4a6
dc.w $2B5,$063,$042,$geb
even

colortableO
dc.w $124,$fdd,$bd9,$6ab
dc.w $a54,$843,$632,$421
dc.w $fOO, $f20, $f40, $f60
dc.w $f80,$fbO,$fdO,$f04
even

colortable
dc . w 0, 0 , 0 , 0 , ° , 0 , 0 , 0

dc . w 0, 0 , ° , 0 , 0 , ° , 0 , °
even

colorscale
dcb.b 1,0
dcb.b 2,1
dcb.b 3,2
dcb.b 4,3
dcb.b 6,4

66 AC's TeCH

Programming the Amiga in Assembly Language

dcb.b 10,5
dcb.b 13,6
dcb.b 16,7
dcb.b 19,8
dcb.b 22,9
dcb.b 25,10
dcb.b 28,11
dcb.b 31,12
dcb.b 34,13
dcb.b 41,14
dcb.b 10,15
even

menus
makemenu menu 0, ' Symmetry' ,menu1, ° , 1
makeitemmenuOitemO, 'Autumn' ,menuOitem1,0,$53,$ffe
makeitem menuOitem1, 'Spiro' ,menuOitem2, 10, $53, $ffd
makeitemmenuOitem2, 'China

Plate' ,menuOitem3,20,$53,$ffb
makeitem menuOitem3, 'Stained

Glass' ,menuOitem4,30,$53,$ff7
makeitemmenuOitem4, 'Origami' ,menuOitem5,40,$53,$fef
makeitem menuOitem5, 'Lariats' ,menuOitem6, 50, $53, $fdf
makeitemmenuOitem6, 'Civil

Defense' ,menuOitem7,60,$53,$fbf
makeitem

menuOitem7, 'Pentagram' ,menuOitemB,70,$53,$f7f
makeitemmenuOitem8, 'Petals',menuOitem9,BO,$53,$eff
makeitem menuOitem9, 'Three

Fold' ,menuOitem10,90,$53,$dff
makeitem

menuOitem10, 'Rings' ,menuOitem11,100,$53,$bff
makeitem menuOitem11, 'Sun

Dial' ,menuOitem12,110,$53,$7ff
makeitem menuOitem12, 'QUIT' ,0,12 0, $52
even

makemenu menu 1 , 'Chaos' , ,100,1
makeitemmenu1itemO, 'Sand

Dune' ,menu1item1,0,$53,$ffe
makeitemmenu1item1, 'Lava

Flow' ,menu1item2,10,$53,$ffd
makeitemmenu1item2, 'Swirls' ,menu1item3,20,$53,$ffb
makeitem menu1item3, 'Great

Wall' ,menulitem4,30,$53,$ff7
makeitemmenulitem4, 'Dragon

Tails' ,menulitem5,40,$53,$fef
makeitem menu1item5, 'Ocean

Floor' ,menu1item6,50,$53,$fdf
makeitemmenulitem6, 'Waves' ,menu1item7, 60, $53, $fbf
makeitem menulitem7, 'Birds of a

Feather' ,menu1itemB,70,$53,$f7f
makeitemmenu1item8, 'Swaying

Flowers' ,menu1item9,BO,$53,$eff
makeitem menu1item9, 'Barbed

Wire' ,menu1item10,90,$53,$dff
makeitem

menu1itemJO, 'Demons' ,menu1item11,100,$53,$bff
makeitem

menu1iteml1, 'Profile' ,menu1item12 , 110,$53,$7ff
makeitemmenu1item12, 'QUIT' ,0,120,$52

DJComputers.cz

Programming the Amiga in Assembly Language
even

dataO:
dc.b '-2.7,5,1.5,1,0,6,320,240',0 ;AUTUMN

even
datal:

dc .b '2.409,-2.5,0, .9,0, 23,256 ,20 0' ,0 ; SPIRO

even
data2

dc.b '-2.08,1,-.1, .167,0,7,224,160',0 ; CHINA PLATE

even
data3

dc.b '-2.05,3,-16.79,1,0,9,320,256',0 ; STAINED GLASS

even
data4

dc.b '-1.806,1.806,0,1,0,5,320,240',0 ;ORI GAMI

even
data5

dc.b '-1.86,2,0,1, .1,4,256,200',0 ;LARIATS

even
data6

dc.b '1.56,-1, .1,-.82,0,3,224,160',0 ;CIVILDEFENSE

even
data7

dc.b '2.6,-2,0,-.5,0,5,224,160',0 ;PENTAGRAM

even
data8

dc.b '-2.5,5,-1.9,1, .188,5,320,256',0 ; PETALS

even
data9

dc.b '1.5,-1, .1,-.805,0,3,200,160',0 ; THREE FOLD

even
datal 0

dc.b '1.455,-1, .03,-.8,0,3,200,160', 0 ;RINGS

even
datall

dc.b '2.409,-2. 5 ,-0.2,0.81,0,23,256,200',0 ;SUN
DIAL

even

chaosO:
dc.b ' .75, .29104740265029, .929 84 49117886 8 ',0 ; SAND

DUNE

even
chaos1:

dc.b ' .5, .52268713415106, .428 5714285 714 3',0 ;LAVA

FLOW

even
chaos2

dc. b '.5,.18987514191394,.83638759723908',0 ; SWIRLS

even
chaos3

dc.b '.5, .48566516831488, .90519373301868',0 ;GREAT

WALL
even

chaos4
dc.b ' .5, .45921779763739, .53968253968254',0 ;DRAGON

TAIL

even
chaos5

dc.b ' .5, .449 , .6225 29 ',0 ;OCEAN FLOOR

even
chaos 6

dc.b ' .5, .44 5, . 81116 ',0 ;WAVES

even
chaos7

dc.b '. 6,.42, .3',0 ;BIRDSOFAFEATHER

even
chaos8

dc.b '. 75 , .5465 70424885 43, .36735623153436',0
; FLOWERS

even
chaos9

dc .b '.7 5 , .214 ,.6 5 ',0 ; BARBED WIRE

even
chaos10

dc.b '.6, .3139667 5109863, .21356391986738',0 ;DEMONS

even
chaosll

dc.b '.6,. 3356, .4 16 ',0 ;PROFILE

even

end

67

DJC
om
pu
ter
s.c
z

68 AC's TECH

The examples of this article are written in
assembler and C and require some knowledge
of the languages to fully understand what they
are all about. They are written only to illustrate
the explanations and are only parts of larger
source codes. They may not be accurate and I
take no responsibility for the correctness or
function of the examples.

Shared Library Overview
To be able to learn how to make a shared

library, it's important to have the knowledge
about what it is all about. In this article I'll take
you through all steps, from the most basic ones
down to the ones dealing with low level library
programming.

Shared Library
First, an answer to the question: what is a shared library? As the

name says, it is a function library shared by several simultaneous tasks
and processes. The shared library code is not present in the executable
image on disk, but is a separate file. The shared code is not loaded
together with the executable. It is loaded into memory only when a
program requires it.

On Amiga, the naming convention says that a shared library
should be in lowercase letters with a ".library" ending, and the directory
to put them in is "LIBS:".

Link Library
A link library is not to be mixed up with a shared library. A link

library is a function library that is linked into the executable at compile
time. A link library becomes a part of an executable image.

ROM Based/Disk Based Libraries
The AmigaDOS system consists of several shared libraries, whose

names you recognize: dos.library, exec.library, graphics.library, only to
mention a few. These libraries won't be found in the LIBS:directory, they
reside in ROM. Whether in ROM or on disk, shared libraries work and
are used the same way.

Memory Usage
As mentioned, shared libraries are loaded when a program re­

quests, i.e. opens, it. When the program has finished using the library,
it closes the library. The library remains in memory even though no
process is using it, until the operating system requires the memory it
occupies (or is forced to remove itself by a program, such as "avail
FLUSH" on the shell prompt in AmigaDOS 2.0 or later).

DJComputers.cz

Other Operating Systems
Shared libraries are not AmigaDOS specific. Such are also found

under UNIX and OS / 2, on ly to men hon the most obvious and common.

Advantages
The reasons why so many systems are using shared libraries are

among others: less disk space is used because the shared library code is
not included in the executable programs, less memory is used because
the shared library code is only loaded once, load time may be reduced
because the shared library code may already be in memory when a
program wants it, and that programs using shared libraries are very
easily updated.

Calling Shared Library Functions
We've been looking at what a shared library is, a little about how

it works and some of its advantages. Now it's time to see how a library
is used and accessed.

Address Library Functions
To be able to handle library calls, we must know how to call shared

library functions. I'll describe it with a small comparison to standard
non-shared functions. The most significant difference is in the way the
functions are addressed. A standard function within a program is more
or less an address to which the program counter is set when we want to
jump to it. A shared library function is on the other hand addressed by
adding a number to the address of the library's base.

When using standard function calls, the compiler or assembler
arrange so that e.g. the function "getname" is associated with the
particular static address in memory where the "getname" function
starts. If the same "getname" function would be a shared library
function, the compiler wouldn't know the actual address of it, but
dynamically add a certain number (index) to the library's base address
to access it.

As you see, we must know the index of the function and the library
base address to be able to call a shared library function.

Library Base
To find out the library base of a shared library, you must call

OpenLibraryO which will return the library base of the specified library
in register DO. All library bases are found like that except exec.library's,
which is found by reading the pointer stored at the absolute address 4.

Index
Whenever you want to call a function in a shared library you (or the

compiler) have to now the index to add to the library'S base address.
E.g., to call OpenLibraryO you must know the index of the function

and the library base itself (OpenLibraryO is an exec.library function and
we know that exec.library's base address is found at address 4). A call
to OpenLibraryO could look like this in assembler:

MOVE.L
SysBase,a6
; SysBase is the name of
; exec . library' S base pointer
: »> Parameters left out in this example <<<

JSR
-552 (a6)

; We' 11 jump straight into the jump
table at the certain index. The index

; is -552 in this case

Parameters
OK, we know how to call a library function and we know that we

must call OpenLibraryO to get a library'S base address. To inform e.g
OpenLibraryO which library we want to open, we must send it some
parameters. The documentation tells us that OpenLibraryO wants the
library name in Al and the lowest acceptable version in DO. Parameters
to the library functions are always stored in registers. Seethe library
reference documentation for closer information exactly which registers.

This example opens a library with the name at libName with
version 33 or higher:

libraries

INCLUDE "exec/funcdef. i"
* _Lva macro constructs
INCLUDE "exec/exec_lib.i"
* exec function index
VERSION equ 33

MOVE.L
SysBase, a6

; exec 1 ibrary base
LEA.L

libName,al
; library name
MOVE.L
#VERSION, dO

; lowest usable version
JSR
_LVOOpenLibrary(a6)
; OpenLibrary()Access

The operating system provides facilities for the creation, use and
access of shared libraries. The functions that let the programmer con­
struct and access libraries are of different levels to give different possi­
bilities. Low level function where you can change every single param­
eter and more high level functions that do a lot without the program­
mers exact specification.

I'll describe the functions of the highest level that also are the most
frequently used:

OpenLibraryO
number.

Gains access to a named library of a given version

Always open libraries with the lowest version which includes the
functions you need. To open intuition.library for 2.0+ (version 36) only,
try something like:

#include <proto/exec .h>
#define LIB_VERSION 36
struet ExeeBase *SysBase;
struet IntuitionBase *IntuitionBase;
void main(void)
(

/,

* The SysBase should be in order to perform this.
* (Using any C startup module will do this for you.)
'/
Intui tionBase= (struet Intui tionBase *)
OpenLibrary (" intuition . library" , LIB_VERSION);
if (! IntuitionBase) {
printf ("Couldn't open intuition version %d+ \n" I LIB_VERSION);
exit{lO) ;
)

/'
* The program using intuition. library V36+ follows here!
,/
)

Amiga DOS file names are not case sensitive, but Exec lists are.
H the library name is specified in a different case than it exists on

disk, unexpected results may occur.

VOLUME 4, NUMBER 2 69

DJC
om
pu
ter
s.c
z

A Guide to AmigaDOS Shared Libraries
CloseLibraryO Concludes access to a library. Whenever your pro­
gram has finished using the functions of a shared library, there should
be a call to CloseLibraryO for every call to OpenLibraryO. Simply like
this:

CloseLibrary((struct Library *)IntuitionBase);

RemLibraryO Calls the ExpungeO function of the specified li­
brary. If the library isn't open, it will delete itself from memory. This is
not typically called by user code.

1* Attempts to flush the named library out of memory. * /
#include <exec/types.h>
#include <exec/execbase.h>
void FlushLibrary(STRPTR Dame)
(

struct Library *result;
Forbid!) ;
if (result;z (struct Library *)FindName (&SysBase->LibList,name)
RemLibrary(result) ;
Permt() ;
}

With these three functions in mind, we'll continue.

Return Code
The return code of a shared library function call is always received

in a register. (Today, I don't think there is a single function not using DO
for that purpose.)

Glue Code
The parameter storage in registers is not that comfortable in all

occasions and many compilers (in all kinds of programming languages)
don't even have the ability to store parameters in (pre-decided) regis­
ters. Then, glue code is required. Glue code (also known as "stub
functions" or simply "stubs") is simply a set of functions that you can
call instead of the shared library functions. The stub function reads the
parameters from the stack and stores them in registers and then calls the
shared library function. That makes the use of the glue code functions
identical to other functions. Glue code is compiled into a kind of object
file, using the suffix ".lib", &nd is stored in LIB: (not to be mixed up with
LIBS: where the shared libraries are stored). All stub functions for the
standard AmigaDOS libraries are found in the "amiga.lib" file that
comes with most compilers.

C and Register Parameters
C language compilers are in general using the stack to pass param­

eters between functions, but to be able to use shared libraries smoothly,
several compilers offer ways to force parameters in registers and auto­
matically use the right library base and function index.

The two largest commercial C compilers on Amiga, SAS/C and
Aztec C, both provide such solutions by special pragma instructions. A
pragma instruction is a line starting with "#pragma", which is a com­
piler instruction keyword, followed by the compiler specific text. Such
a pragma defines the function, which library base it needs and in which
registers the parameters must be stored. By using such pragmas you
don't have to call or link any glue code within your program.

The GNU C compiler, which is a freely distributable C and C++
compiler, has a very complicated way to solve this problem. It declares
and uses in lined functions that use GNU's own _asmO instruction to
set the proper registers to the right values.

SAS/C pragmas are built-up like this:

Itpragma <kind of call> <lib base> <name> <index> <registers>
which means: #pragma
compiler instruction keyword. <kind of call>

Which kind of library call should this pragma generate? There are three
different ones:

70 AC's TeCH

'libcall' makes a standard library call
'tagcall' makes a standard library call where the last parameter points
to a tag list
'syscall' makes a call to exec.library <lib base> The library base name to
use. Not specified for 'syscall' calls.

Example: "DiskfontBase" (The name of diskfont.library's library base.)
<name>

Function name identifier.
Example: "MyFunction". <index>

Function index of the library. A hexadecimal, positive number (which
is turned negative by the compiler when it generates the indexed library
call). Example: "1A" (The first library function index of all normal
libraries.) <registers>

Register / parameter information in a special format, a sequence of
hexadecimal numbers. Reading from the right, each digit has the
following meaning:

1. Number of parameters.
2. Result code register (0-6 means register DO-D6 and 8-9, A-E

means register AO-A6)
3+. The parameter registers, read from the left (!). The numbers are

associated with the same registers as in paragraph 2 above.
Example: #pragma libcall SysBase OpenLibrary 228 0902

When using this information, a compiled result uses SysBase, the
index and the parameters in registers just as we did in the assembler
examples above. C language usage:

#include <proto/exec.b>
/ .. This includes the pragma,& too '*'
#define libName "foobar . library"
#define VERSION 33
OpenLibrary(libName, VERSIO!J) I

(Generate pragma files with the SAS/C utility 'fd2pragma' which
uses a function descriptor file as source of information. Read about
function descriptor files further on.)

Indexing Effects
Compilers of different programming languages often create ma­

chine language instructions that address data indexed by a 16-bit
register, instead of straight 32-bit addressing, to increase execution
speed and decrease the code size.

Some libraries might request or offer a "callback function", a
function supplied by you in the form of a function pointer that might get
called from inside the library. A call from within a library may not have
that index register set properly and therefore you must set it before you
can access any data that requires that register!

In SAS/C, this is simply done by defining the function like:

void _saved s callback (void) I
if using DICE, _saved 8 must be replaced with _veta'.

(In the SAS and Aztec compilers, it can also be done by calling get
a40 first in the callback function.)

From version 36-37 some of the AmigaOOS system libraries fea­
ture hook abilities, which is a kind of callback function. They are also
called from inside the library and then of course also demand loading of
the index register the same way.

Registers
Library functions should preserve the a2-a7 and d2-d7 registers.

The rest must be stored in a safe place and then brought back after the
library call if you want to be sure of their contents.

Parts of an AmigaDOS Shared Library Image

DJComputers.cz

A Guide to AmigaDOS Shared Libraries
If we were content with only using shared libraries, we would have

enough information by now to use all kinds of library calls.
Only scratching the surface isn't enough if we want to create

something by ourselves. We must instead start digging into detailed
information. How is a shared library constructed? Of which parts? How
do you combine those parts to make your own shared library?

First we take a look at the parts of a shared library. A shared library
does not look the same when compiled/ assembled as when loaded into
memory and added to the system's list. That is because when the library
is loaded/ added it is also modified and initialized in a few ways to make
the system able to use it. But let's not hesitate.

A shared library image is built up by a few different parts:
- Code preventing execution
- ROMTag structure with sub data:
- Init table
- Function pointer table
- Data table
- Init routine
- FunctionsPrevent Execution

The first thing the disk image contains is a piece of code that
prevent users from trying to execute the library as an executable file.
That piece of code should preferably return an error code to the calling
environment (that most possibly is a shell).

Example:
MCVEQ
#-1,dO
RTsRoMTag Structure

Coming up next is a ROMTag structure. ROMTags are used to link
system resident modules together. The ROMTag looks like:

(found in <exec/resident.h»
struet Resident {
UWORD rt_MatchWord;
struet Resident *rt_MatchTag;
APTR rt_EndSkip;
UBYTE rt_Flags;
UBYTE rt_Version;
UBYTE rt_Type;
BYTE rt_Pri;
char '*rt_Namei
char *rt_IdString;
APTR rt_Init;
}; rt_MatchWord-

Used by exec to find this structure when it is about to link us into the
ROMTag list. This must contain RTC_MATCHWORD (the hexadecimal
number 4AFC, which is a MC68000 "ILLEGAL" instruction).

rt_MatchTag - This must contain a pointer to this struct.
rt_EndSkip - Pointer to end of library init code.
rt_Flags - RTF _AUTOINIT informs exec that the structures rt_Init
member points to an init table.
rt_ Version - Library version number
rt_Type - Should contain NT_LIBRARY (found in <exec/nodes.h»,
which informs exec about the fact that this is a shared library image.
rt_Pri - Initialization priority. 0 (zero) is perfectly ok.
rt_Name - Pointer to the zero terminated library name.
rt_IdString - Standard name/version/ date ID string.

Example:
"myown.library 1.0 (01.04.93)" rt_Init-

This data points to an init table if RTF _AUTOINIT is set in structure
member rt_Flags.

As you can see, this structure requires some more information
stored. You must have the library name and a standard ID string stored,
and the last structure member should point to a "init table".

InitTable
The init table is a table of four long words. I try to visualize them

in a structure like this:
(A struct of this kind is not found in any standard include file, this

is written by me.)

struet Ini tTable {
ULONG it_LibBaseS!ze;
APTR it_FuncTable;
ULONG *it_DataTable;
APTR it_InitRoutine;
I;

it_LibBaseSize - Size of your library base structure. In common situa­
tions it is no point in using anything else but a straight struct Library as
library base. It must not be smaller than that!
it_FuncTable - This should contain a pointer to an array of function
pointers.
it_DataTable - Pointer to a data table in exec/InitStruct format for
initialization of the Library base structure.
in_InitRoutine - Pointer to a library initialization routine or NULL.

Once again we have a structure that needs more data. The function
pointer table, the data table and the init routine is left.

Function Pointer Table
This should be a table of function pointers to the different functions

in the library. They can be specified in two ways:
1) By setting the first word in the list to -1, you specify that the table is
a list with 16-bit addresses relative to the start of the list. End the table
with a -1 word.
2) By storing absolute 32-bit pointers to the functions and ending with
a -1 long word. My examples will use the second way.

The pointers should point to the functions of the library. All
libraries should still have a few standard functions used by exec and
must not be left out. The first four entries are dedicated to such functions.

The list must look like:

- Open()

- Open library routine.
- Close ()
- Close library routine.
- Expunge ()
- Delete library from memory routine.
- Extfunc()
- Reserved for future expansion.
- own1 ()
- Our first function
- own2 ()
- Our second function

- The rest of our functions
- -1
- End of table

How to program such functions is discussed further on. Let's
continue, we have the data table and the init routine left to look at.

Data Table
The data table is used to initialize the library base structure when

it's linked into the system list of shared libraries. The table is in the so
called "exec/InitStruct" format. A data table is controlling a number of
different initializing methods. In our case we just use a number of offsets
(relative to the library base) and their initialization values.

#include <exec/libraries. i>
#include <exec/initializers. i>
#include <exec/nodes. i>
INITBYTE

LN_TYPE, NT_LIBRARY

; Init type: Library.
INITLONG

LN_NAME. LibName

VOLUME 4, NUMBER 2 71

DJC
om
pu
ter
s.c
z

A Guide to AmigaDOS Shared Libraries
; Init name of the library
INITBYTE
LIB_FLAGS I LIBF _SUMUSED! LIBF _CHANGED
; Set the flags that tells exec we have cbanged
: the library and that we allow check summing.
INITWORD
LIB_VERSION, VERSION
; Init version
INITWORD
LIB_REVISION, REVISION
; Init revision
INITLONG
LIB_IDSTRING,IDString
; Init IDString
DC.L 0
; End of InitStruct () command table

If you have a larger library base than a Library struct, you might
want to add more initialize entries to this table. The only thing left now
to complete our ROMTag structure is the init routine.

Init Routine
This routine gets called after the library has been allocated by exec.

The library base pointer is in DO, the segment list is in AD and SysBase
in A6. This function must return the library base in DO to be linked into
the library list. If this initialization function fails, the library memory
must be manually deallocated, then NULL returned in DO.

Deallocate library memory by using something like:

move.l
dO,aS
moveq
#O,dO
move.l
as , a1
move.w
LIB_NEGSIZE(aS) ,dO

sub.l
dO,al

add.w
LIB_POSSIZE(aS) ,dO
jsr
_LVOFreeMem(a6)

The segment list, that we receive in AD, should be stored some­
where for later access. We'll need it when the library is to be removed
from memory. Note that this routine will be called only once for every
time the library is being loaded into memory. That makes it perfectly ok
to store the segment list simply like:

LEA
anywhere (pc) ,a1
MOVE.L
aO, (al)
RTS

anywhere: DC. L 0

A nice way to store this data is to extend the library base structure
to hold the segment list pointer too. This was the last of the initialization
part. The ROMTag structure is complete. Left in the library are the
functions that it should contain.

Functions
As mentioned before, there are four required functions that should

be in all shared libraries. The rest of the functions are up to you to decide,
design and make sure they receive proper data. How to code the
functions and what to think of when doing so, is discussed in a chapter
below.

Libraries in the System
We know what shared libraries are and we are familiar with all

data stored in the library image. We know what functions to use when
we want to access libraries and we know how to call library functions.
What about low level information? What is done in the system when we
call OpenLibraryO? How can I check if library already is loaded and

72 AC's TECH

which version number that library has? How can I patch a function of an
already loaded library?

Library Opening Details
When a single OpenLibraryO is called, a lot of things happen:

1. Exec checks the already loaded libraries to see if the requested library
is there. If it is, go to step 6.
2. If the library name is specified without path, it is searched for in ROM,
LIBS: and then current directory, otherwise simply in the specified path.
The first directory that holds a library with the name it searches for, will
be the one it loads from. If the library wasn't found, return NULL. If the
library was found anywhere else but in ROM, it's LoadSegO'ed into
memory. ROM libraries are already accessible.
3. Exec scans the library for the 4AFC word with a following 32-bit
pointer back to it. That word is the beginning of a ROMTag structure!
4. InitResidentO is called, which hopefully finds the RTF _AUTOINIT
flag set in the rt_Init member of the ROMTag structure and therefore
calls MakeLibraryO which performs: Memory is allocated to fit a jump
table and the library base structure. The size of the library base structure
is found in the first long word of the data table. The jump table is created
by a call to MakeFunctionsO and is placed just before the library base in
memory. The size of the allocation can be read in the library base
structure (lib_NegSize + lib]osSize).

The library base structure is initialized using the data table list and
an InitStructO call. The init routine is called with the library base pointer
in DO, SysBase in A6 and the segment list pointer in AD. If NULL is
returned, the entire OpenLibraryO fails and returns NULL. Observe that
any kind of failure in InitResidentO means that the library is never
added to the system.
5. AddLibraryO adds the library to the system list, making it available
to programs. The checksum of the library entries will be calculated.
6. The OpenLibraryO call's version number parameter is checked
against the version number of the library base (lib_Version). If the
requested number is higher than the library version, OpenLibraryO fails
and returns NULL.
7. The open function of the library is called. If that fails NULL is
returned, otherwise the library base is returned in DO.

If the same library exists in LIBS: with one version and in current
directory with a later version, OpenLibraryO will always go for the one
that it finds first. In this case that is the library in LIBS:. If that library has
a too low version number, OpenLibraryO fails.

As you can see, OpenLibraryO is a rather high level function. By
using the other mentioned functions you can add a library to the system
without going the way I describe in this article. But that wouldn't make
it a standard shared library.

Library List
Exec keeps track of all libraries that are opened. We can take part

of exec's library list information by studying the linked list starting at
SysBase->LibList. That pointer points to a 'struct List', whose
'structNode' pointers point to the 'struct Library' of all libraries that are
currently in memory. This sounds more difficult than it is. Take a look
at this small example.

To find a certain library name in the library list, we can write:

struct Library *findlib (char *name)
(

struct Library *lib;
Forbid() ;
lib = (struct Library *)FindName(name);
Permit();

return (lib);
) Patching Libraries

All libraries that are opened get a jump table created. That means
that even ROM based libraries get a jump table in RAM. When using
functions in any library, we always go through that jump table which
consists of nothing but a number of JMP #ADDRESS. As you under-

DJComputers.cz

A Guide to AmigaDOS Shared Libraries
stand, these jumps are supposed to jump into the library to perform
whatever they are to perform. By changing an entry in that jump table,
we can make a certain library call to call our own function instead of the
original! But to change an entry is more than just storing in the list (since
there are checksums and things that have to be correct). The correct way
to do it, is to use SetFunctionO, which can make one of those JMPs jump
to our own code.

To replace OpenLibraryO with our own function, we can do it like:

#include <exec/types.h>
.include <exec!protos.h>
int OurOpenLibrary (char·, int);
void patch (void)
{

APTR oldfunc;
oldfunc = SetFunction((struct Library *)SysBase,
-552,
(APTR) OurOpenLibrary) ;

f*
* Now, all following calls to OpenLibrary() will
* call our own function instead.
*f
f*
* To swap back, we simply use SetFunction()
* again. We really should be careful before
* doing 80, because someone else might have
* patched the function after us, and if we
* simply restore our original we would ruin
* that patch!
* f
SetFunction(SysBase, -552, oldfunc);
}

int _asm OUrOpenLibrary(register _a1 libName,
register _dO version)
{

f*
* Code our own library opener. Do remember that
... our index register is not initialized now, and
* if you want it, make sure you can restore the
* previous value before returning from this
* function. We don't want to crash any programs,
* do we?
*f
I'" Preserve used registers! * I

Patching libraries are often used when creating debugging tools
(such as the well-known 'Mungwall' which patches AllocMem and
FreeMem, 'Snoopdos' which hangs on to most of dos.library' s functions
and others) and for programs that enhances or somehow changes the
functionality of a function system wide (such as 'Explodewindows'
which patches OpenWindowO and beautifies window openings,
'RTpatch' and 'reqchange' which patches different requester calls to
bring up reqtools.library requesters instead). NOTE: SetFunctionO can­
not be used on non-standard libraries like dos.library! If you want to
patch dos.library, you must manually ForbidO, preserve all 6 original
bytes of the jump table entry, SumLibraryO (to evaluate the new
checksum) and then PermitO.

Programming Functions
Shared libraries must be programmed by someone. Until now

you've learned how to control, play around and change already existing
libraries. Now, we'll check out more of what there is to know to be able
to program a library. The ROMTag initializing is of course required
when programming a library, but the biggest part and the part that
really makes the library, is still the functions.

You're not restricted to anything when it comes to the function of
the routines you want to put in a shared library. What must be thought
of when creating functions for a shared library using a compiler, is that
there is no main function and no startup modules, and therefore no one
of the symbols declared in those modules will be declared if you don't
do it yourself.

There are always four functions required that have to be in every
library. They are OpenO, CloseO, ExpungeO and ExtfuncO and are
called by exec when the library is to be opened, closed and removed

from memory (the fourth is reserved for future use). Exec turns off task
switching while executing these routines (via Forbid), so we should
make them not take too long. (When using SAS / C these functions won't.
be necessary to code, see the "Compiling" and" Linking" chapters.)

- Openl)
- (Library base:a6, version:dO)

This routine is called by exec when OpenLibraryO (or more correct
InitResidentO) is called. Open should return the library pointer in DO if
the open was successful. If the open fails, NULL should be returned. It
might fail in cases where we allocate memory on each open, or if the
library only can be open once at a time.

Example:
Increase the library's open counter

addq.w
#1,LIB_OPENCNTla6}
; Switch off delayed expunge
bclr
#LIBB_DELEXP f LIB_FLAGS (a6)
; Return library base
move. 1
a6, dO
rts- Close ()
- (Library base:a6)

This routine is called by exec when CloseLibraryO is called. If the
library is no longer open and there is a delayed expunge, then Expunge!
Otherwise Close should return NULL.

Example:
; Decrease the library's open counter
subq.w
:ftl,LIB_OPENCNT(a6)
; If there is anyone still open, return
bne.s
ret label
; Is there a delayed expunge waiting?
btBt
#LIBB_DELEXP. LIB_FLAGS I a6)
beq.s
ret label
; Do the expunge!
bar
Expunge
retlabel:
; set the return value
moveq
#O,dO
rts- Expunge ()
- (Library baae,a6)

This routine is called by exec when RemLibraryO is called, or from Close
when there was a delayed expunge. If the library is no longer open then
Expunge should RemoveO itself from the library list, FreeMemO the
InitResidentO's allocation and return the segment list (which was given
to the Init routine). Otherwise Expunge should set the delayed expunge
flag and return NULL.

Because Expunge might be called from the memory allocator, it
may NEVER WaitOor otherwise take long time to complete.

Example:
Is the library still open?

tst.w
LIB_OPENCNT(a6)
beq
notopen
; It is still open. set the delayed expunge flag
i and return zero
beet
#LIBB_DELEXP, LIB_FLAGS (a6)
moveq
#O,dO
rta
notOI)en: ; Get rid of us I
movem.l
d2fa5fa6, - lap)

VOLUME 4, NUMBER 2 73

DJC
om
pu
ter
s.c
z

A Guide to AmigaDOS Shared libraries
; save some registers
move.!
a6,a5
; Store our segment list in d2
lea
anywhere (pc) ,a6
move.!
(a6) ,d2
move. 1
4,a6
; get SysBase
; Unlink from library list
move.l
a5,a1
jsr
_LVORemove (a 6)
; This removes our
; node from the list
; Free our memory
moveq

move. I
a5,a1
move.w
LIB_NEGSIZE(a5),dO i jump table size
sub. 1
dO,al
add.w
LIB_POSSIZE(a5),dO ; the size of the rest
; of the library.
jar
_LVOFreeMem{a6)
; Return the segment list
move.l
d2,dO
movem.!
(sp)+,d2laS/a6
; Get back the registers
rts- Extfunc ()
- (we don't know about any registers!)

This routine is reserved for future use and should return 0 in register DO.

Example:
MOVEQ #O,dO

RTS Function Descriptor File
To easily use the SAS/C options for creating a shared library, a

standard AmigaDOS function descriptor file is required. It describes the
functions in a library like:

##base _OwnBase
30

OWnFunction (a) (AOD2)
OWnFoobar(a) (DlA3)
##end
Where:
##base -

The library base identifier ##bias - Index base position. The first
function specified will use this index, which should be positive (turned
negative later by the compiler) and in all normal cases starts on the first
free jump table entry: 30.

functionname(a)(registers) Describes in which registers the func­
tion received its parameters in. The registers should be written without
any spaces between them as in the example above.
##end - end of function descriptor fileGlue Code. Glue code is written
to be called with the parameters on the stack instead of the registers as
it should. The glue functions should pick parameters from the stack and
assign to the proper registers.

Example:
MOVE.L

aI, - (sp) ; Store register Alan stack
MOCE.L
a6. - (sp) ; Store register A6 on stack
MOVE.L
12 (sp) ,a1 ; Get first argument from stack
MOVE.L
16(sp),dO; Get second argument from stack

74 AC's TECH

MOVE.L

4, a6 ; Get SysBase in A6.
jsr
_LVOOpenLibrary(a6) ; Call OpenLibrary()
; Now dO contains the result code from the
: library call
MDVE.L
(sp)+,a6 ; Restore A6 from stack
MOVE.L

(sp)+,a1 1 Restore Al from stack
rtsCompiling

Things to think of when compiling library code:
Always make the function called from another process (the outside) a
"_saveds" function as the index register has to be properly initialized
before continuing. _saveds should be replaced with _geta4 when
using Dice and an initial Geta4() call when using Manx.
Whether to use global symbols unique or shared by every task. SAS/C
features easy changing between these two, but other compilers might
have trouble creating unique global variables for each library open.
Options when compiling a library may include some of the following.
(These are the SAS/C options, but all compilers of today offer similar
functionalities.):

LIBCODEForces all index addressing to use the library base pointer (a6)
instead of the standard a4.
NOSTANDARDIO Do not use any of the C standard io functions such
as printfO or fprintf(stderr, ...) since they rely on global symbols declared
and initialized in the startup module.
OPTIMIZE Optimize the output code. Linking Linking a li­
brary often causes many problems, at least it has done so for me. You
must remember that no compiler startup symbols will exist unless you
declare them! Things like stack expansions can't be made to work, and
routines like fopenO and others are using startup module symbols
(which can be declared by us though).

With the symbols in mind, we continue! All the talk about the
library initializer structures is no problem of a SAS/C programmer's
mind. By including the following flags in your 'slink' line, all such
problems are solved:

LlBPREFIX <prefix>
Default is '_' (underscore). This is the prefix added to the functions

specified in the function descriptor file to match the symbols of the
object file(s).

LlBFD <function desc file>
Tells where the function descriptor file is.

FROM lib:libent.o lib:libinit.o
Two nice object files holding code that we would have to code by

ourselves otherwise. If you are using global variables in your code,
"libinit.o" will make all currently open sessions of the library access the
same, shared, variable. By using "libinitr.o" all globals will be copied at
the library open, thus each open library has its own global variables.

LlBID
Sets the IdString of the library

LlBVERSION <number>
Sets the version number of the library

LlBREVISION <number>
Sets the revision number of the libraryDebugging

Using SAS/C shared libraries can be run time debugged(including
variable checking, break-pointing and so on) just like any other program
using the "step into reslib" option in 'cpr'. Break any library function by
writing "b myown.library:foobar" (where foobar is the name of the

DJComputers.cz

A Guide to AmigaDOS Shared Libraries
function we want cpr to stop in when we enter) on the command prompt
of 'cpr'. When creating debug code, remember to debug the library that
exists in the same directory as the code does, or speci fy the compiler flag
SOURCE 15= and the name of your sourcefile.

Hints
I have been programming and developing shared libraries for

some time by now, and there are a few things to pay certain attention to
when dealing with this stuff.

Flush before retry
Libraries don't go away simply because you close them, you know

that. If you run your library once, close it and recompile it with a few
changes, there will still be the older version remaining in memory that
will be opened. When debugging libraries, always make sure that your
library isn't already in memory before debugging a new version!

I made a small program that resets the open counter and then
RemLibraryO a named library. It is not at all a nice thing to do, but there
really is a problem when you open your library and something crashes
before you have had the chance to close it. There is no "nice" way of
removing such a library from memory!

Globals
By using the SAS/C object files libinit.o or libinitr.o you can make

your global variables to be shared by all processes or unique for each
OpenLibraryO call. If you want to mix the two versions or create
something different, I advise you to code the library initial code by
yourself.

Stack usage
When your library is called and runs, it uses the same stack as the

caller. If the caller has a very small stack, so do you. Built-in stack check
routines are not available since they need irreplaceable symbols. For
advanced users, allocating and using an own stack while the library is
running could be the only and best way to solve a problem like this.

Symbols
I've written it earlier and I do it again: high level language func­

tions often uses symbols initialized and declared in the startup modules.
Declare them by yourself if possible or avoid using such functions!

Register preservation
I think it's a good habit to always preserve all registers (except for

DO that holds the return code) when your library routines are called.
Remember that your library code index register is un-initialized when
called from the library opener.

Appendix A.
VERSION NUMBERS AND SHARED LIBRARIES

Commodore has introduced a general standard for shared library
version numbering. The libversion number is the number of the library
version. The librevision number is expected to be a counter from 0 and
upwards, without any kind of preceding zero. This makes the first
library version 1.0 and such as 1.9 is followed by 1.10, 1.11 and so on all
the way to the maximum, of the same version, 1.65535.

Failing in the version number check of a library opening leaves the
library in memory. For example, when you want to open
"myown.library", it's loaded into memory. If the version number check
fails and you get a NULL in return, "myown.library" will still remain
loaded.

There are utilities which automatically updates a source file with
the version number, revision number and the ID string on every invoke.
'bumprev' is one.

B. FURTHER READING
Amiga ROM Kernel Reference Manual: Libraries, 3rd edition.
Amiga ROM Kernel Reference Manual: Includes & Autodocs, 3rd

edition.

C. LIBRARY SOURCE EXAMPLES
Makefile A

This makefile uses the standard way of making a
shared library with SAB/C. Using the already
created object files SAS supports us with.
ee
= Be
CHEADER = myown. h
CSOURCE = myown. c

OBJ
= myown.o

LIBRARY = myown • library
FLAGS

= STRINGMERGE NOSTKCIIl(NOSTANDARDIO\

DATA=NEAR NOVERSION LIBCODE\
OPTIMIZE
$ (LIBRARY) : $ (OBJ)
slink with «
LIBFD myown. fd
to $ (LIBRARY)

FROM lib:libent.o lib:libinit.o $ (OBJ)

noicons
SD SC
libid "lIl¥own.library 2.1 (18.04.93)"
libversion 2 librevision 1

copy $ (LIBRARY) LIBS: CLONE # Copy library to LIBS:
$ (OBJ): $ (CSOURCE) $ (CHEADER)
$(CC) $(FLAGS) $*.c
Makef!le B

This makefile compiles everything and uses no
pre-cOlI\Piled files.
Easy changed to fit-DICB, Aztec: or other
compilers.
CC
• BC

CHEADER = lIl¥own. h
CSOURCB = myown. c
ASOURCE = myownass. a
OBJS
= myown.o myownass.o
LIBRARY = myown . library
FLAGS

= STRINGMERGE NOSTltCHK NOSTANDARDIO\
DATA=NEAR NOVERSION LIBCODB\
OPTIMIZE
ASK
= a8m
ASMFLAGS= -iINCLtJDE:
$ (LIBRARY) : $ (OBJS)

Blink to $(LIBRARY) FROX $(OBJS) noiconB SD SC
copy $ (LIBRARY) LIBS: CLONE
myown. 0: $ (CSOURCE) $ (CIIlIADBR)
$(CC) $(PLAGS) $*.c
myownaS8. 0: $ (ASOURCB)

$ (ASH) $ (ASKFLAGS) $*. a
myowIlass.a

'* * '* * * '* * ••••• _. '* ** * * 'II •••• "' •••• * * 'II •• * *.* * ••• * '* •• * '*

'* myown.llbrary assembler source code

* Author: Daniel Stenberg

SECTION

code
NOLIST
INCLUDE uexec/types.i"
INCLUDE uexecl initializers. i·
INCLUDE "exec/libraries. i"
INCLUDE lIexec/llsts.i"
INCLUDE "exec/alerts.i"
INCLUDE "exec/resident. i"
INCLUDE "libraries/doe. i"
LIST

XDEF InitTable
XDEF Open
XDEF Close
XDEF Expunge

VOLUME 4, NUMBER 2 75

DJC
om
pu
ter
s.c
z

A Guide to AmigaDOS Shared Libraries
XDEF LibName
XREF _SysBase
XREP _LVOOpenLibrary
XREP _LVOCloseLibrary
XREF _LVOAlert
XREF LVOFreeMem

XREF _LVORemove

; Prevent library execution:

Prevent:
MOVEQ #-l,dO
rts

The romtag structure is next:

KYPRI BQU 0

; priority zero ...
VERSION BQU 2

; version 2
REVISION EQU 1
; revision 1
RomTag:

; STRUCTURE RT, 0

DC. W RTC_MATCHWORD ; UWORD RT_MATCHWORD

DC.L RomTag
; APTR RT_MATCHTAG
DC • L EndCode

; APTR RT_BNDSKIP
DC. B RTF _AUTOINIT
; UBYTB RT]LAGS
DC.B VERSION
; UBYTE RT VERSION

DC. B NT_LIBRARY

; UBYTE RT TYPE

DC.B MYFRI

; BYTE RT_PRI

DC • L LibName

i APTR RT NAME

DC. L IDString
; APTR RT_IDSTRING

DC.L InitTable
AP'I'R R'I'_INI'I'

the name of our library
LibName:
DC.B 'myown.library' I 0

; standard name/version/date ID string
IDString:
DC.B 'myown.llbrary2.1 (01.04.93)',13,10,0

; force word alignment
DS.W 0

; The init table
InitTable:
DC. L LIB_SIZEOF ; size of library base data,
; sizeof (struct Library)
DC. L funcTable
; pointer function pointer
; table below
DC. L dataTab1e
i pointer to the library data
; initializer table
DC.L initRoutine ; routine to run

funcTable:

j- standard system routines
dc.10pen
dc.! Close
dc.l Expunge
dc.1 Extfunc

;- our library functions
iThe function names get those in the
;beginning when compiling in c.
de.l _Min
dc.l _Abs

j- function table end marker
dc.l -1

76 AC's TECH

; The data table initializers static data structs.
dataTable:
INITBYTE
LN_TYPE,NT_LIBRARY
INITLONG
LN._NAME, LibName
INITBYTE
LIB_FLAGS, LIBF _SUMUSED! LIBF _CHANGED
INITWORD
LIB_VERSION, VERSION
INITWOiUl
LIB_REVISION, REVISION
INITLONG
LIB_IDSTRING,IDString
DC.L 0

; The init routine.
ini tRoutine:
; (segment list :aO)
move.l a5,-(sp)
; save as
lea
seglist (pc), as ; get address of our
; seglist storage
move. I aO, (as)
; store segment list
; pointer
move.l {sp)+,aS
i restore previous a5
move.l #O,dO
; return zero
rtB

segliat:
DC.L 0

; The four required functions:

Open;
(libptr:A6, version:DO)

Increase the library's open counter
addq.w
#1, LIB_OPENCNT(a6)

; Switch off delayed expunge
belr

#LIBB_DBLBXP, LIB_FLAGS (06)
i Return library base
move. 1
06,dO
rts

Close:
; (libptr:06)

; set the return value
moveq
#O,dO
i Decrease the library's open counter
subq.w
#1, LIB_OPBNCNT (a6)

; If there is anyone still open, return
bne.s
ret label
; Is there a delayed expunge waiting?
btst
#LIBB_DBLEXP, LIB]LAGS (a6)
beq.s
ret label
i Do the expunge!
bsr
Expunge
retlabe1:
rts

Expunge:
(libptr:a6)

Is the library still- open?
tst.w
LIB_OPENCNT (a6)
beq
notopen
; It is still open. set the delayed expunge flag
i and return zero
baet
#LIBB_DELEXP, LIB]LAGS (a6)
moveq
#O,dO

DJComputers.cz

A Guide to AmigaDOS Shared Libraries
rts
; return
notapen: ; Get rid of us!
movem.l
d2/a5/a6, - (sp) ; save some registers

move.l
a6,a5
; Store our segment list in d2
lea
seglist (pc) I a6
move.l
(a6),d2

4,a6
; get SysBase
; unlink from library list
move.l
a5,a1
jar

(a6) ; This removes our node
; from the list
; Free our memory
moveq

#O,dO
move.l
as,a!
move.w
LIB_NEGSIZE (as) ,dO
sub.l
dO,a!
add.w
LIB_POSSIZE(a5) ,dO
jar
_LVOFreeMem{a6) ; This frees the memory

; we occupied
; Return the segment list
move.l
d2,dO
movem.l
(sp)+,d2/aS/a6 Get back the registers

rts

Extfunc:
; should return zero
moveq
#O,dO
rts

; EndCode is a marker that show the end of our
; code.
EndCode,
END

myown.h

/ '* '* '* '* '* '* '* '* '*. '* '* **** '* '* * '* *** * '* * ** * * * * '* * * **** '* *******

'* myown.library header file

* Author: Daniel Stenberg
************** '* '* ******* "' ••••••••••• ** ** •• ** **** /
1* Library function prototypes * /
int Min(int, int); /* return minimum value *1
int Abs(int);
1* return absolute value· I
myown.c

1* * * *. * * *** * * * * * * * * * ••• '" * "' •••••••• "' •• * * * * * * * * * * •

• myown.library functions source code

* Author: Daniel Stenberg
* * * * *. * •••• * ••• *. * ** *. *. * * * *. * •••••• *"'*"'* ** ••• * / ,"
* Use the _asm, _register and the _xx registers to
* force parameters into certain registers in SAS/C,

* Use _XX registers to force register parameters using DICE.

"' int _asm Min(regiater _dO int a,
register _dl int b)
(

int c = a < b ? a ; hi
return (c);
)

int _a8m Abs (register _dO int a)
(

int e = a < 0 ? -a : ai
return (e);

myown.fd

##base _MyBase
##bias 30
Min(a) (DOD!)

Abs(a) (DO)

##end
myown...,pragmas. h

I· SABIC pragmas * I
#pragma libca11 MyBase Min lE 1002 1* dO and d1 *1
#pragma 1iOOa11 MyBase Ahs 24 001 /* only dO * /
use library . c

#include "myoWIl....,Pragmaa.h" 1* if using SASIC or Aztec C *1
#include "myown.h"
atruct Library *My-Baae=NULL;

void main (void)
(

int min, aba;
MyBase=OpenLibrary ("myown. 1 ibrary", 2);
if (IIyBase) (
min = Min(3, 2); /* library Kin() function *1
aba = Abs(-12); 1* library Abs() function */
CloseLibrary(MyBase);
} else
printf ("Couldn I t open myown.library! \n") ;
)

Complete source
code & listings can be

found on the
AC's TECH disk.

Please write to:
Daniel Stenberg
c/o AC's TECH
P.O. Box 2140

Fall River, MA 02722

VOLUME 4, NUMBER 2 77

DJC
om
pu
ter
s.c
z

Amazing Computing
'* Vol.7, No.ll, November 1992
Highlights include:
II Amiga 4000," Commodore creates a bold new direction in
Amiga computing with expanded graphic resolutions, modular
CPU, and more.
"Progressive 040/2000," a review by Rick Mataka.
"Remap Magic, n Learn why this tool is your best bet for
making use of your palette.
"Beginning e," Chue Xiong covers some of the basics of the C
language.

Vol.7, No.H, December 1992
Highlights Include,
.... Polishing Basic Programs," Marianne GiUis shares the secrets of
BASIC programming experts.
.... Banners,,. A tutorial on creating banner-length printouts, by Pat
Kaszycld.
.... Structured Drawing &: TueBASIC," paul Castonguay shows how
TrueBASIC fully supports any level of hierarchical structure.
Also, complete reviews of Voyager 1.1, PIXOUND, VistaPro 2.0,
and OpalVision.

Vol.8, No.1, januaryl993
Highlights Includ.,
"'Creating a Storyboard in Final Copy ," see how to layout your
animation storyboard in Final Copy. by R Shamms Mortier.
" A Look at 24-bit Libraries/' Shamms Mortier looks at 24-bit
libraries.
"'Using Laser Disk Players with the Amiga," Rom Battle examines
the benefits of laser disks as a source of video images. He also shows
an easy way to set them up.
Plus: A complete review of the new A1200 &: coverage of Comdex
Fan 92" tbe FES-London_

Vo1.8, No.2, February 1993
Highlights Include:
U Extending the AMOS Sort," Dave Senger looks at the AMOS sort
function.
" Business Cards,H Soft-Logik's Dan Weiss gives an in-depth tutorial
on how to create your own business cards.
.... ADI012," a review by Rick Manasa .
AND! A spedal sneak preview of the One-Stop Music Shop from
Blue Ribbon &: complete coverage of the WOCA Toronto!

Vo1.8, No.3, March 1993
Highlights Includ.,
"Babylon 5," the Amiga changes the way TV shows are made, by les
Paul Robley
"Amiga Vision Projects," by William Murphy
"Art Expression," review by Merrill Callaway
PLUS: Creative business forms &: CES Winter '93

VoL8, No.4, April 1993
Highlights Include,
-rriplePlay Plus &: SyncPro", reviews of two great music products
by Rick Manasa
"CanDo," a review of the application development system from
INOV Atrorncs, by Rob Hayes
ALSO: Super VideoSlot for April, ARexx, eli, and great Diversions!

VoL8, No.5, May 1993
Highlights Include,
"'Directory Opus" , review of the latest version of Directory Opus and
a start-up tutorial by Merrill Callaway
"Media Madnesl," explores the inside of Blue Ribbon Soundwork's
new Media Madness, by Todor Fay & David Miller
"'SuperJAM 1.1," a review of the latest release of SuperJAM! by Rick
Manasa
"'ImageFX," review by R. Shamms Mortier
ALSO: Super VideoSlot for May-The New Graphics Modes!

VoL8, No.6, june 1993
Highlights Include,
1# AMOS Turns Professional" ,review of a major upgrade hailed as a
comprehensive development system, by Jimmy Rose
.... Searching Medical Literature," using the Arniga to tap the vast
resources of medical on-line services, by Dr. Michael Tobin
ALSO: Newsletter Design, ARexx Programming, Hot Diversions

if Vol.8, No.7, july 1993
Highlight s Include:
"TypeSMITH 1.0" , review of Soft-Logik's new font editor, by Merrill
Callaway
"Opal Paint 2.0," review of the late st version of this paint program for
the OpalVision board, by R. Shamms Mortier
"Structured Drawing," basic features and advanced techniques, by
Dan Weiss
"DeluxePaint IV AGA," review of the latest paint package for the
AGA ma chines, by R. Shamms Mortier
ALSO: Super VideoSlot, ARexx, and New Products!

. ., Vo1.8, No 8, August 1993
Include:

"Amiga Vision Professional", review Commodore's upgraded
authoring sys tem , by Douglas J. Nakakihara
"Art Department Profesional 2.3," review of the latest release of
AdPro from ASOC, by Merrill Callaway
"Professional Page 4.0," the latest incarnation of Pro Page, by Rick
Manasa
"Pseudo Radiosity Effects," why ray tracing is not an accurate model
of true light behavior, by Mark Hoffman
"T -Rexx Professional", a review of the latest release of T -Rexx from
ASOC, by Merrill Callaway
ALSO: AC Phone Book: A directory of Amiga Developers!

.• Vo1.8, No 9, September 1993
Highlights Include:
"Adventures with Aladdin",Part III of this tutorial series on Aladdin
4D, by R. Shamms Mortier
"CanDo,"First installment of this series for CanDo programmers, by
Randy Finch
"Caligari 24," Review of version 3.0 of this 24-bit software, by R.
Shamms Mortier
"Coming Attractions," A look into the future attractions in Amiga
games, by Henning Vahlenkamp
ALSO: WOCA-Australia &: Summer CES!

'0 Vol.8, No 10, October 1993
Highlight s Include:
"Making Waves", Focus on the wave requester in Part IV of the
Aladdin se ries, R. Shamms Mortier
"Clouds in Motion," Animated clouds in Scenery Animator, by R.
Shamms Mortier
"Media Madness," Discover what it can do for BarS&Pipes, by Rick
Manasa
"Bars&Pipes Professional 2.0," review by Rick Manasa
"Bernoulli MultiDisk 150", A review of this great Iomega drive.
ALSO: Commodore's new CD32!

'if Vol.8, No 11, November 1993
Highlights Include:
"CanDo" , This installment covers developing a custom object by
combining several standard CanDo objects, by Randy Finch.
"Brilliance," A complete review of this hot new paint and animation
program from Digital Creations, by Frank McMahon. !

"Online," The introduction of this new telecommunications column
for the Amiga, by Rob Hays.
"Get Graphic: Digital Image FIX," The introduction of AC's new
graphics column, by William Frawley .
"Picasso II", A review of one of the best new graphics cards available,
by Mark Rieken.
ALSO: WOCA Pasadena: Commodore introduces CD-32! Plus, the
incredible LightRave, a Video Toaster emulator!

. ., Vol.8, No 12, December 1993
Highlight s Include:
"CanDo Tutorial", Basic concepts behind animations and
prese ntations, by Randy Finch .
"LightRave Review," A review of this uniques Toaster emulator , by
Shamms Mortier .
"Online," The introduction of this new telecommunications column
for the Amiga, by Rob Hays.
"Get Graphic: Digital Image FIX," The introduction of AC's new
graphics column, by William Frawley .
"Video Toaster 4000 Review", A review of the latest Video Toaster by
Shamm s Mortier .
ALSO: 1993 Reader's Chioce Awards!

DJComputers.cz

-

AC's TECH, Vol. 2, No.4
Highlights Include:
"In Search of the Lost Windows," by Phil Burke
UNo Mousing Around," hide that annoying mouse pointer
with this great program, by Jeff Dickson.
"The Joy of Sets," by Jim Olinger
"QuarterbackS.O," a review by Merrill Callaway.

AC's TECH, Vol. 3, No.1
Highlights Include:
"Comeau Computing's C++," A review of this great new C
compiler by Forest Arnold.
"Programming the Amiga in Assembly Language Part 5," by
William Nee
"Make Your Own 3D Vegetation/' Laura Morrison shows how
to use iterated functions to create 3D trees and plants.
PLUS! The HotLinks Developer's Toolkit ON-DISK!

AC's TECH, Vol. 3, No.2
Highlights Include:
"Ole," An arcade game programmed in AMOS BASIC, by
Thomas J. Eshelman.
"Programming the Amiga in Assembly Language Part 6," by
William Nee
"Wrapped Up with True BASIC," Text and Graphics wrapping
modu1es in True BASIC, by Dr. Roy M. Nuzzo
., ARexx Disk Cataloger," An AmigaDOS manipulator that
produces a text file about the floppy

Darrel Westbrook

-

AC's TECH, Vol. 3, No.3
Highlights Include:
""Ken Rainbow Library," A review by Merrill Callaway
"Programming the Amiga in Assembly," by William Nee
"All You Ever Wanted to Know About Morphing," An in­
depth look at morphing for Imagine by Bruno Costa and Lucia
Darsa
"Custom 3D Graphics Package Part I," Designing a custom 3D
graJ?hics package by Laura Morisson.
"Build a Second Joystick Port," A hardware project for

allee.

AC's TECH, Vol. 3, No.4
Highlights Include:
"Custom 3D Graphics Package Part II," Put the finishing
touches on your own graphics package by Laura Morisson.
"TruBASIC Input Mask," An mteresting TrueBASIC utility by
T. Darrell Westbrook.
"Time Efficient Animations," Make up for lost time with this
!lreat animation utility by Robert Galka.
'F-BASIC 5.0," A review of this latest version of F-BASIC by

Jeff Stein.
PLUS: CD32 Development Info!

-

Complete selection of Amazing Computing and AC's TECH A VAl LABLE.!

WHAT HAVE YOU BEEN MISSING? Have you missed information on how to add ports

to your Amiga for under $70, how to work around DeluxePainl's lack of HAM support, how to

deal with service bureaus, or how to put your Super 8 films on video tape, along with Amiga

graphics? Do you know the differences among the big three DTP programs for the Amiga? Does

the ARexx interface still puzzle you? Do you know when it's better to you use the CLI? Would

you like to know how to go about publishing a newsletter? Do you take full advantage of your

RAMdisk? Have you yet to install an IBM mouse to work with your bridgeboard? Do you know

there's an alternative to high-cost word processors? Do you still struggle through your

directories?

Or if you're a programmer or technical type, do you understand how to add SI2K RAM to

your 1MB ASOO for a cost of only $30? Or how to program the Amiga's CUI in C? Would you like

the instructions for building your own variable rapid-fire joystick or a 246-grayscale SCSI

interface for your Amiga? Do you use easy routines for performing floppy access without the aid

of the operating system? How much do you really understand about ray tracing?

The answers to these questions and others
can be found in

AMAZING COMPUTING and AC's TECH.

Deve*oplllg to Am9OOS:1:-O
COfMWId line Utility

DJC
om
pu
ter
s.c
z

r-------------------------------, YES! The "Amazing" AC publications give me 3 GREAT reasons to save!

Please begin the subscription(s) indicated below immediately! I ••• I®
Name __ ___

Address ____________________ ________________________________ ___

City __________________ State ZIP ____ _

Charge my Visa MC #_________________ Call now and use your
Visa, Master Card, or

Expiration Date ____ Signature Discover or fill out and
Please circle to indicate this is a New Subscription or a Renewal send in this order form!

1 year of AC
US $27.00 c::::::J

Canada/Mexico $34.00 c::::::J
Foreign Surface $44.00 c::::::J

1-year SuperSub
US $37.00 c::::::J

Canada/Mexico $54.00 c::::::J
Foreign Surface $64.00 c::::::J

1 year of AC's TECH

US $43.95

Canada/Mexico $47.95 c::::::J
Foreign Surface $51.95 c::::::J

Please call for all other Canada/Mexico/foreign surface & Air Mail rates.

L Check or money order payments must be in US funds drawn on a US bank; subject to applicable sales tax. .J
- ----------------------------o

r-------------------------------,
NAME ____________________________ _

___ ___

CITY ____________________ STATE ____ ____ _

CHARGE MY: ___ VISA _M/C # _____________________ ___

EXPIRATION DATE _________ _ SIGNATURE ___________________ _

Amazing Computing Back Issues: $5.00 each US, $6.00 each Canada and Mexico,
$7.00 each Foreign Surface. Please list issue(s), _______________________ ___

Amazing Computing Back Issue Volumes:
Volume 1-$15.00' Volume 2, 3, 4, 5, 6, 7, or 8-$20.00' each or any 12 issues for $20.00'

• All prices now include shipping & handling .• Foreign surface: $25. Air mail rates available.

Single issues just $14.95! V1.1 (PREMIERE), V1.2, V1.3, V1.4, V2.1,
V 2.2, V2.3. V2.4, V3.1, V3.2, V3.3. V3.4

Volume One, Two, or Three (complete) or any four issues- $40.00!
Freely Distributable Software - Subscriber Special (yes, even the new ones!)

1 to 9 disks $6.00 each
10 to 49 disks $5.00 each
50 to 99 disks $4.00 each
100 or more disks $3.00 each

$7.00 each for non subscribers (three disk minimum on all foreign orders)
AC#1 ... Source & Lislings V3.B & V3.9 AC#2 ... Source & Listings V4.3 & V4.4
AC#3 ... Source & Listings V4.S & V4.6 , AC#4 ... Source & Listings V4.7 & V4.B

Amazing on Disk: ACl/5 ... Source & Listings V4.9 AC#6 ... Source & Listings V4.10 & V4.11
AC#7 ... Source & Listings V4.12 & VS.1 AC#B ... Source & Listings VS.2 & S.3
AC#9 ... Source & Listings VS.4 & VS.S AC#10 ... Source & Listings VS.6 & S.7
AC#11 ... Source & Listings VS.B, S.9 & S.10 AC#12 ... Source & Listings VS.11, 5.12 & 6.1
AC#13 ... Source & Listings V6.2 & 6.3 AC#14 ... Source & Listings V6.4, & 6.5
AC#15 ... Source & Listings V6.S, 6.7, 6.B, & 6.9

Back Issues:

AC'sTECH:

PDS Disks:

Total: $ __ _

(subject to applicable
sales tax)

Please list your Freely Redistributable. Software selections below:

AC Disks ____________________________________ _
Complete Today, or telephone

7 -800-345-3360 now!
(numbers 1 through 15)

You may FAX your order fo /-508-675-6002 AAfICUS ___________________ _

(numbers 1 through 26) Please allow 4 to 6 weeks for delivery of
Fred Fish Disks subscriptions in US.

(numbers 1 through 910) (Domestic and Foreign air mail rates available on request)

Check or money order payments must be in US funds drawn on a US bank; subject to applicable sales tax. .J L __ __________________________ _
I

DJComputers.cz

High
Resolution
Output

TM
from your AMIGA
DTP & Graphic
Documents

You've created the perfect piece, now you're looking for a good service bureau for output. You want
quality, but it must be economical. Finally, and most important...you have to find a service bureau that
recognizes your AMIGA file formats. Your search is over. Give us a call!

We'll imageset your AMIGA graphic files to RC Laser Paper or Film at 2400 dpi (up to 154 1pi) at a
extremely competitive cost. Also available at competitive cost are quality Dupont ChromaCheck™
color proofs of your color separations/films. We provide a variety of pre-press services for the desktop
publisher.

Who are we? We are a division of PiM Publications, the publisher of Amazing Computing for the
Commodore AMIGA. We have a staff that really knows the AMIGA as well as the rigid mechanical
requirements of printers/publishers. We're a perfect choice for AMIGA DTP imageseuing/pre-press
services.

We support nearly every AMIGA graphic & DTP format as well as most Macintosh™ graphiC/DTP
formats.

For specific format information, please call.

For more information call 1-800-345-3360
Just askfor the service bureau representative.

DJC
om
pu
ter
s.c
z

Special Offer for AC Readers!
AMOS (US), AMOS Compiler, and AMOS 3D

all three for only $99.99*

Bring your Amiga to Life!
AMOS - The Creator is like nothing you've ever seen before on the Amiga. If you want to harness
the hidden power of your Amiga, then AMOS is for you l

AMOS Basic is a sophisticated development language with more than 500 different commands to
produce the results you want with the minimum of effort. This special version of AMOS has been
created to perfectly meet the needs of American Amiga owners. It includes clearer and brighter

graphics than ever before, and a specially adapted screen size (NTSC).

"Whether you are a budding Amiga programmer who wants to create fancy graphics without weeks
of typing, or a seasoned veteran who wants to build a graphic user interface with the minimum of
fuss and link with C routines, AMOS is ideal for you." Amazing Computing , June 1992

Define and animate hardware and software sprites (bobs) with lightning speed.

Display up to eight screens on your TV at once - each with its own color palette
and resolution (including HAM, interlace, half-brite and dual playfield modes).

Scroll a screen with ease. Create multi-level paralla x scrolling by overlapping
different screens - perfect for scrolling shoot-em-ups.

Use the unique AMOS Animation Language to create complex animat ion
sequences for sprites, bobs or screens which work on interrupt.

Play Soundtracker, Sonix or GMC (Games Music Creator) tunes or IFF samples
on interrupt to bring your programs vividly to life.

Use commands like RAINBOW and COPPER MOVE to create fabulous color
bars like the very best demos.

Transfer STOS programs to your Amiga and quickly get them working like the
original.

Use AMOS on any Amiga from an A500 with a single drive to the very latest
model with hard disk.

WHAT YOU GET!
AMOS (US)-AMOS BASIC , sprite editor , Magic Forest and Amosteroids arcade games , Castle AMOS
graphical adventure , Number Leap educational game, 400-page manual with more than 80 example
programs on disk, sample tunes, sprite files, and registration card.
AMOS Compiler-AMOS Compiler, AMOS language updater, AMOS Assembler , eight demonstration
programs which show off the power of the compiler , and a comprehensive, easy-to-use manual to
develop lightning fast software.
AMOS 3D-Object Modeler , 30 new AMOS commands, and more. AMOS 3D allows you to create 3D

Use the sophisticated editor to design your creat ions

. ' . ' ..,n o o S \ , . ,,1 I fil l

l ' Or "' "5 011 : " n p. "
I\s ft :2 9
St tU "l : H lU' l'j Qcl
C h i l .. W f/ n : J
t'o bbi Qs : Ho nl y Pyt }to n,
1' 1 T e nnl l'i: , L il t. n f) Qut ,
D. " (\l<. i 11 9 "I i n(' .

lI .). t (/' s : U oO i n V " t l' ,,""IIII(4' (1.

Create serious softwar e like Oataflex

Produce education al program s with ease

Play Magic Forest and see just what AMOS can dol

animations as fast as 16 to 25 frames per second. You can display up to 20 objects at once, mix 3D with Design sprites using the fIOwerful Sprite Editor

other AMOS features such as sprites , bobs, plus backgrounds, and more.

Limited Time Offer for AC readers ollly!
Get all three AMOS package s at one great price. Order today by sending your name, address
(physical address please-all orders will be shipped UPS), and $99.99 ('plu s $10.00 for Shipping
and handling) to: AMOS Special , PiM Publications, Inc., P.O. Box 2140, Fall River, MA 02722-2140 or
use your VISA, MasterCard , or Discover and fax 1-508-675-6002 or call toll free in the US or Canada:

1 -800-345-3360
Please allow 4 10 6 weeks for delivery .

AMOS written by Fran90is Lion el.
© 1992 Mandar inJJawx
Country of 0 "9in : UK

Create breathta king graphic al effects as never before

DJComputers.cz

